
 Shaver1128
Page 1

Q: I'm here with Mike Shaver and it is June 5th, 2006. Mike, when did you
first start using computers?

A: I think the first memory I have, probably photographically assisted, of

using computers, was probably at my dad's work in Georgia. So I would
have been two and a half maybe, going to the office with him and press
buttons on things that turned colours. Sort of more under my own power
would have been a couple of years later.

 I remember saving up my Christmas allowance and birthday money to buy

my half of a Commodore 64 when I was, I guess, five or six. Somewhere
in that. So yeah, my mother and father are both in the software field. So I
come by that somewhat honestly.

Q: And do you—did you have formal training as well, later?

A: Classes in elementary and high school. But no post secondary in it at all,

no.

Q: Okay, I guess you were quite young, but do you remember the first

programming project you worked on?

A: Yeah, we used to get these magazines for the Commodore which would

have little programs in the back you would type in. Because people didn't
really distribute software for it in the same way. Or I couldn't afford the
software that was distributed that way.

 So there were certainly a couple of occasions of, you know, changing the

colour in something and so forth. Hacking on those bits as I typed them
in. I think the first program I wrote sort of on my own was a little happy
birthday thing for my—a happy mother's day thing, I think, for my mom
on our little computer. Just put a little graphic up and make it beep and we
were done. But—yeah.

Q: And when did you first start contributing to open source projects?

A: First work on—first contribution to open source was I think '94. I'd been

using Linux for a while and at the—in our consultancy I was working
with, and I was interested in contributing to it. Didn't really—I was a little
intimidated by the sort of technical depth in the kernel and the community
around there.

 So the first thing I did was actually audit some of the network code against

various standards and add comments to it. This has this, this is compliant
with this section, or this is not compliant with that section. And I got most

 Shaver1128
Page 2

of them wrong on the first pass. But iterated through that with help from
Alan Cox and some other people.

 So that was probably my first contribution into the code, would have been

the Linux kernel then and—yeah, certainly done other, you know, sort of
local modifications of open source software. But not really—I think it
was upstream and [nothing] that was really contributed back. So that was
probably my first involvement in a community like that, in an active way.

Q: How did you first soft of connect to open source? Was it just—like, how

did you hear about it? Did you get—did you have any magazines or—

A: Yeah, a friend of mine, Dan Mickery ran a bulletin board of his own

writing out of his house. And I helped him administer that one summer
when he was away and then he just—he told me at one point, he was
going to replace that with a Linux system and I was—it could have been a
microwave, it could have been a goat.

 So that was my first sort of exposure to Linux, which was really the first, I

guess the first open source software that I was aware was open source.
And that would have been, yeah, probably '92 or '93. And so that was sort
of the—that was the introduction there, was just word of mouth from a
friend and then I enjoyed playing on it quite a bit. It was all very, sort of
Lion, the Witch and the Wardrobe, wondrous and confusing and probably
allegorical in its own way.

 And so I helped him on that system as well and eventually ended up

installing it at home and—the price point was right also for a lot of the
stuff we were doing at the consultancy I was working at Ingenia. We were
very much a bootstrap organization and so having the software to be able
to do these Unix’y things without cost, was important. Less so being able
to maintain them ourselves. But that was something that certainly
appealed to a lot of the students and myself that were working on that
stuff.

Q: And when did you first start working with Mozilla projects then?

A: I was at Netscape in '97 with the JavaScript team. I was there technically

as an intern and I'd been—I'd been agitating for a while to get the
JavaScript engine released under an open source license. At that time
there was this program called the Netscape One Open Network
Environment Program. And you could send in a fax and they would send
you the password to get the JavaScript source engine and you could do
what you wanted with it. You just couldn't re-distribute the source.

 Shaver1128
Page 3

 So I had been playing with that a little bit. We were a Netscape var. The
company that I was with had grown by that point a little bit. So I was
interested in that technology at that point and I got pretty burned out on
what I was doing at the consultancy. And I was invited to come down and
to joint Netscape.

 So I said at first, I'm going to—I'll come down for six months and I'll sort

of take a (inaudible) there and work on this stuff. But I'm—I want to
come back and do more stuff with this company here. And then so when I
arrived there, I was talking to people in the JavaScript group—Brendan
Eich and our manager at the time, Clayton Louis—that I thought, you
know, there was a real opportunity for JavaScript to be used in a lot more
environments. People were imbedding Tickle and so forth into their—into
their software in universities and I thought that was sort of repellent.

 And thought, you know, JavaScript could have a great opportunity to be

imbedded in these environments, if the licensing got fixed. And they were
receptive to that and it sort of worked its way up the chain. There was a
plan to release that under the LGPL at the time and then late in December,
I guess maybe early January at that point, of '98, I was told we weren't
going to be releasing the JavaScript engine that way but we were going to
do—we were going to do a broader strategy around open source. And I
thought at the time, that that meant there was going to—that, you know,
someone in legal or someone in—on the business side, had freaked out a
little bit and said, "Oh, we need a big strategy for this. And make sure it
doesn't hurt us and do—"

 And so I was little bit disappointed. But I was invited to a meeting with a

bunch of people to talk about that strategy and that's where I'd heard that
we were going to be releasing the source. And so I was involved from that
point on in a lot of little things. It was sort of a mini, sort of a little start-
up bubble within Netscape. Everybody kind of did all the little pieces that
you do together, when you're doing just, you know, a bunch of us did
system administration. And did, you know, setting up of tools and
figuring out policies and I worked with Mitchell and others on the license.
And bringing—making connections with the other open source
communities that I had some contact with.

 So really from, sort of day minus one, I've been involved and sometimes,

you know, I was full time with AOL and Netscape for a while after that.
And I worked as a consultant. I've been in other jobs as well. So always
been at least a little bit involved and have—and am now back, you know,
in the fold full time at the corporation.

Q: So you've—and during certain points during—within your career at

Mozilla, you've been a volunteer?

 Shaver1128
Page 4

A: Yeah, initially I was at Netscape on staff and it was a couple of months

after the project got rolling Brendan moved over to be working on Mozilla
full time, from the JavaScript group and I did the same thing a couple of—
maybe a year later, when Jamie Zawinski was leaving. They needed
somebody to do developer relations there.

 But yeah, after I left AOL, I was at a company called Zero Knowledge

doing open source strategy for them. And I continued to be active, to
whatever my time permitted, in Mozilla. Either technically or from a sort
of procedural, organizational perspective and that kind of pattern of more
or less involvement, has continued.

Q: So what projects—what are you kind of specifically working on now?

A: Nowadays, I'm responsible for—or irresponsible for our—the software

ecosystem around Firefox and Mozilla technology. So working—it
includes developer relations and so all of the great work that Deb
Richardson and others have done on Mozilla Developer Centre, reflects
well on me now.

 A lot around our extensions community and how to help users get more

value out of that. How to make sure that people who are building
extensions, have the right hooks and are in—plugged into the process in
the right way. But also, in terms of helping Mozilla do work that we've
always wanted it to do I think, which is sort of be ambassadors for the
Web, as a technology platform and as a way for people to build
applications and communities and share experiences and so forth.

 And, you know, there are a lot of—certainly a lot of technologies you can

choose to build an application on today. Even those that are very network
related and I think Mozilla has an important role as sort of being the
evangelists and the defenders and in some ways, sort of the central nexus
for Web technology. For a lot of people it is, and I think we can do a lot
of good there. So that's also on the edge of my plate.

Q: How do you generally communicate with those you work with?

A: Sarcastically. It varies a lot. Sometimes obviously face to face in the

office here and I travel quite a bit to California. Often—sometimes as
often as every third week I'm there. A lot of it is IRC and email, instant
messaging. Sort of depends on the kind of conversation we're having.
Some things are much easier to deal with in email where you can edit a
little bit and present more structured positions.

 Shaver1128
Page 5

 But I spend a lot of time on the phone with co-workers and with partners
and just sorting through stuff in a higher band length way. So really all
the tools at my disposal. Not a lot of postal mail or fax, you know, when I
have to sign something. But pretty much everything else, Skype and
Voice over IP or the Voice over IP that our phones are. IRC is huge. It's
probably, the bulk of the real time communication is that. And then little
bits of pieces I need to—

Q: Do you ever find that working in IRC can be problematic if there's no sort

of record of what was said and certain people are left out of certain
discussions, that sort of thing?

A: Yeah, it can be. I mean, it—so many of our channels are logged. So

people can go back and refer to them and I keep logs on my client for a
shorter period of time to go back and refer to. It's sort of my collective
memory, or personal, I guess, memory.

 It can be—I think it's the same risk you run with any conversation. I

mean, you can have that problem in an email thread. You can have that
problem in a newsgroup. There is certainly something to be said for
making it easier for people to catch up quickly. So you can forward
someone a whole email thread. But you can't always—it's hard—it's
harder to get the same feeling out of IRC by re-reading it.

 But I think there are a lot of decisions and a lot of discussions that can

happen that way that are quite productive. I don't know that you can sort
of reach the perfection of everybody that could add value to it, is involved
in it. At some point you have to trust that you got the right set of people.
Or that, you know, if you didn't and someone comes in and says, "You
know, really should be doing this instead." Then you decide then if you're
going to bear the cost of making that change or not.

 But it is an issue for—it's always been an issue for the project. It was an

issue when we first created the project at Netscape with, you know, a
hundred Netscape engineers and employees who were all in the same
building and used to having conversations that way. And private mailing
lists and how much of that becomes public and what are the terms for it?
And what's the—do you need to involve everybody equally in these
conversations? Do you need to a record of decisions? What are you
trying to—what problem are you trying to solve with this communication?

 And I think we're in a pretty good—pretty good place now. I think the

recent newsgroup re-organization and a renewed focus on using those
groups for active product design, especially in Firefox and technology
design, has helped a lot in helping new people get into the community and
finding good contact points there. But also in creating a textual record of

 Shaver1128
Page 6

the major discussions. Between that and Bugzilla, we have a lot of history
there I think. Probably more than any other project of our scale—whether
that's proprietary or open. That you can get to and dig through.
Sometimes there's a lot to absorb for that reason. There's a lot of groups
you could follow and the bug traffic can be very high. But I think that's
the right problem for us to have right now.

Q: When you're working in groups, how, generally is the division of labor

determined?

A: Yeah, that's a good question. It's usually some riff on self-selection. You

know, within the corporation, within the project, there are certainly areas
of work that tend to fall—or areas of involvement that tend to fall to one
group versus another. Within those groups, I guess it varies group to
group. But, you know, on the developer relation side, on extensions on
product development and design, it's generally, you know, whoever says,
"I'll do that," that has, you know, that we can sort of credibly believe they
will.

 There's load balancing that happens. Mike Tripp our VP of Engineering at

the corporation, has been excellent in helping us get better at that. And so
there's some of that that goes on. But really it's a, you know, it's self-
selection. It's—sometimes someone is volunteered for a task by someone
else. Usually in a pretty soft way, right? "You should talk to so and so. I
think he could help you out with that." Versus, "He'll do this."

 Which is a little bit—people who have come to the project, you know, and

they—"I'd like to help out." And they don't really know what they want to
help out on. Sometimes want to be directed pretty specifically. Those
people tend to not have a fantastic experience with the project. Because
it's not something that's really set up to give hands on, step by step,
individual mentorship.

 Sometimes you'll get that, it really comes out of a personal relationship

more than a task that's being mentored in that case. But yeah, people who
can't sort of find a piece they want to work on, people—we have—
everybody has something they want someone to fix for them. So you can
get those initial ideas. But to find something that suits what they want to
do and, you know, be proactive about getting the help they think they
need—those people are much more successful.

 And I think that's one of the reasons that it tends to—it has so far sort of

fed on itself there. The people who have been successful and become
significant members of the community, tend towards that style of self-
motivation and learning. And so there isn't as much of a culture of a more

 Shaver1128
Page 7

traditionally—like, that didactic approach to—or explicit approach to
bringing people into the project.

 I'm not sure we could really sustain it, in terms of resources anyway.

Mentoring is hard work. It takes a different set of skills sometimes from
doing the work itself. And with time zone and language and
communication, pieces that are there as well, it's—there are a lot of things
that make that complicated.

I think in the right cases, it can work well. But we tend to prefer more
highly leveraged things where I can explain a problem. Someone can
explain a problem and the tools that, you know, “this is what I would start
looking at first,” and then sort of answer questions once and get, you
know, have people do work and explore stuff and say, "This didn't work.
Why do you think that is?" And move on. Rather than, "I did this piece,
what's next?"

So maybe that's—that might be something that, you know, might be
leaving contributors on the table, so to speak, that could be very valuable
to us if we nurtured them up. But I think that taking that cost on would
not be something the project could really bear in its current form.

 We've been working actually with schools, the one chief to my mind right

now is Seneca College here in Toronto, to get some of that leverage. To
work with the faculty and key student project groups there. To bring them
into the community and help educate them about how things work so they
can pass that on and work it through the rest of their programs and the rest
of their faculty. And they have a strong interest in Open Source as well
and a similar approach to the important parts of how software is designed
and built, and especially the social piece.

 So that's been working out really well and that's the model I think if

we're—if we continue to be this successful with Seneca, we want to find a
good environment to roll that out in, in other areas. We get a lot of
contacts from universities, as you might imagine, who want to do
something with Mozilla. And that's, again, an area where coming and
saying, "What should we do," is not really as productive a start as, "We
want to do this with Mozilla. What do you recommend we do?"

 And that's how it started with Seneca. They had a project that some

students were working on as part of a group co-op effectively and they
wanted to use Firefox for part of that. They had some questions and
wanted to be connected with someone that could help answer them. And
that was successful enough that we sort of established this baseline of
communication and credibility there. So it was easier to say, I'm going to
invest some more time in this and talk to them about how they could

 Shaver1128
Page 8

broaden the reach of Open Source and Mozilla specifically in their
organization.

But doing that without the benefit of an initial sort of engagement, that
shows that there's a good cultural fit between the organizations and we're
all talking about the same kinds of things. And something to point out on
both sides to say, “this worked and that's why we're doing more of this.” I
think without those things it would have been hard to have been successful
and we've seen that in some other relationships that were kind of stillborn
with other universities.

Q: Who generally do they tend to go to initially? Or does it kind of vary—?

A: Yeah, it varies a lot. Some will come in through a partner's address.

Some will come in through a mailing list or a newsgroup post. If they
know generally the kind of technology they want to be working with,
you'll sometimes see an out of the blue mail to one of the owners of that.
Whoever's—in some cases, just whoever's email address they can find.
It's not always clear, for better or for worse, it's not always clear who the
right person to talk to is.

 A lot of them end up on our developer documentation list now because it's

relatively prominent on the documentation site. We need to actually
change some of the text around that to people's expectations better. But a
lot of them come in, especially if they're coming from a commercial
context, come in through the partner's address.

 Academic, can come in through there, can come in through Bug comments

or newsgroups, even more now. But I still—yeah, any module owner gets
a couple of message a week, I think, of, "I'm working on this project, what
do you think I should do?" Or, you know, "Who can tell me more?" And
sometimes, often it's not to the right person at all. So you bounce them
around a little bit. But yeah, it's pretty spread out.

Q: Would you say that strict ownership of specific areas of code are

enforced?

A: In some areas, very much so. In some areas, less so. One of the

characteristics of the project confounds some attempts to make that more
rigid, is that there's a lot of code that's shared, both in purpose and in—
where it comes from in terms of who's doing the coding, between different
projects and people move in and out and—or their focus will shift from,
you know, they'll need to fix something in this module in order to solve a
problem they're having with their application. And so they'll do a lot of
work on that and they're sort of the de facto owner.

 Shaver1128
Page 9

 In some areas, there is a fair bit of ownership history and a fair bit of
dogma around that. Not always bad dogma by any means. The JavaScript
engine, the Netscape portable run time, portability layer, the lay out
engine, to some degree, networking. Certainly the application, Firefox
application itself, you know, Ben is the module owner of record for that.
There are lots of different kinds of ownership there around what code goes
in? Where does the product go? What's prioritized? How is it managed?

 And as those modules become bigger and as the—especially as they

become bigger in terms of the number of contributors that are working on
it, we're trying to find, you know, ways to apply other techniques, right?
What does product management mean to Firefox? How does that differ
from module ownership or product design? How can that help? What do
we need to be worried about? Can it help us scale? How do we find
people who can help us but also understand the context we're in.

 I think we're doing a pretty good job there. I think, you know, Mike

Connor, Mike Beltzner, have contributed a lot to helping Ben and helping
in general, and Chris Beard as well, obviously. To figure out where the
product is going. I think if you asked, you know, five module owners
what module ownership means, you'd get many, many different answers.

 But I think that there's usually an idea of where the buck stops, for a given

module, if there's some dispute that can't be—especially technical dispute
that can't be solved through cold application of reason. Where there's just
a preference issue or there are two goods to be traded off.

 In some areas of code, you know, there isn't really any ownership. It's

code that hasn't changed in a long time. Or—and that's the dominant case.
Where there's code that hasn't changed in a long time, so there hasn't really
been a need for ownership to be exerted there and so there's no real sense
of, you know, of who's responsible for those final decisions.

 And so those will tend to trickle up to our sort of, uber owner, Brendan.

And if there's a need for an ownership change there, if somebody appears
out of the woodwork, that, you know, is strong and committed to it and
has established some credibility, then that’s usually not a hard call to
make.

Q: So would that person go to Brendan or would that--?

A: Yeah, owners are appointed, I guess, declared maybe, by Mozilla staff.

Brendan very much leads that decision-making process for software areas.
We're trying to figure out how the notion of module ownership applies to
things like licensing. To user interface design, to the website, to different
things we do that aren't just the production of source code.

 Shaver1128
Page 10

 So there's certainly a debate there. The staff at Mozilla that our group--

was really vital for a long time and then kind of waned, I think, in its
direct day to day involvement in how the project operates. Probably for
the best, I think. I like to think that it, you know, it shows we set up a
structure that worked pretty well. People could resolve disputes on their
own, generally, and find a common direction to work towards.

 And even where those--where there are some, you know, pretty big

variances in direction, you know, between people who continue to want to
work on the suite, and the Sea Monkey project and those that are focused
on Firefox and different release timelines and so forth. People are
generally still able to find commonality and trade off their needs against
each other's.

 And in that context, Brendan and staff tend to have more of a sort of

moderating or mediating role than declarative. And sort of in setting
policy, tends to--like all good law, right? It's codification of a practice and
Brendan's done a great job with that. I think we'll see changes in how
module ownership works. There's certainly issues we haven't had as much
in the past or haven't had as many years around concentration of developer
talent and module ownership at different companies. Whether that's the
corporation or other companies that are contributing to it.

 And what that means and what the role of a module owner is. What

their—what they can be expected to do that's in--that's counter to the
desires of their company. How much we can ask them to wear two hats
and how they can abdicate themselves, if they feel they should, for a given
decision.

 I don't think we will likely have a, you know, congressional caucus and

build some sort of constitution out of it. We don't really operate that way.
But I think we will have to find things that work and get quickly away
from things that don't in that area. I mean, it's a problem that we had
historically under Netscape as well. Initially, all of the module owners
were Netscape employees and they were certainly, as all of us were then,
under a lot of pressure to ship and to be able to ship Netscape's product.
And that was the source of quite a bit of tension in the early years of the
project.

 And a delicate tension, right? The engineers are being—were being paid

by Netscape and so they, you know, they paid the piper and they got to
call the tune. But there was also, you know, how much can we push on
the Mozilla side, for things that are important to the project and that we
think are—or keep us away from decisions that we think will hurt it.

 Shaver1128
Page 11

Because that was “our job” and many of us were Netscape employees that
were charged with making sure the project was successful.

Q: So do you think—or some modules operate quite a bit differently than

others, at this point?

A: Yeah, I would say so. I think there's some commonality there around, you

know, around how review works. Around who can vouch for somebody
else to review in that area or representing their module direction within the
context of a larger release. But that tends to be more, again, sort of self
selection and, you know, if people are following you, then you're leading.

 So people who say, this is where I think we're going to go and obviously

have the time to back that up or can exert influence in other ways to get
those things done in addition to being declared, that's sort of the modern
form, I think, of module ownership for us and it's worked pretty well.

Q: How important are comments in the code to sort of, smooth development?

A: It varies a lot. I think I'm—and yeah, I think this is, again, one of those

things you'll get a lot of different answers. I'm sort of the opinion that
comments are necessary where, for whatever, you know, reason of
externality, the expressiveness of the language or a need for a specific
performance or something imposed by another API, you can't write code
that really says what it means. There really is sort of self-documenting.

 There have been many comment policy or coding style, on comment

policies that have been proposed or used within different groups. I think
one of the things that you need in order to make comments in code
valuable, is a real discipline about keeping them up to date. And in some
modules that's done well and in others, there are clear lies. And to my
mind, that's a little worse than not having them at all.

 I mean, a good comment that, you know, describes the—lets you think

about the software at a higher level as you're reading through it and let you
check your assertions and so forth through that, is—can be very valuable.
I don't think that's been something that we've really invested in a lot and
it's not clear that that kind of in-code documentation is really the main
barrier to improving our quality of our software. I think the complexity of
the code needs to be reduced and we're working on that.

 And at that point, we'll be able to look and say, you know, “Are there

pieces of this code that need some comments to describe it so people can
come in and understand what it does and what they should know if they're
going to change it?” Or, “Is the code clear or robust enough that it can
accommodate those things?” And some of that's tied also into, you know,

 Shaver1128
Page 12

the state of test suites and the coverage of the tests that we do run. How
confident are we that, you know, we can verify a change versus having to
reason it out in priori or vice versa.

 And that's where comments can help. But I don't think it's been—in some

areas, in the layout module in JavaScript, in Necko, I guess, there's—there
are often pretty good comments describing how things are expected to
work. And if you find a discrepancy there, it's usually something you
need to look more closely at. In other areas, especially the app front end
there's often not as much explicit comment text.

 The higher level languages, like, or the languages like JavaScript that let

you express things a little differently, can make it a little easier, I think.
To express some things. Sometimes they obscure your meaning in
different ways but we don't—we certainly don't see as much in the way of
explicit in-code documentation at those app levels. For whatever reason
that is.

Q: Have you ever clashed with somebody else over a point of code and how

do you resolve those problems generally?

A: Oh, yeah. Yeah, I mean, that happens all the time. It happens in small

ways in every code review. “I think you should do X,” “I did Y for a
reason,” etc. And that's an area where module ownership comes in, in a
lot of cases and yeah, I mean, it's really case-by-case.

 I'm trying to think of an example where we didn't just kind of pound it out

and, you know, “This will happen if we do that.” “This will happen if we
do Y.” “Well, I'll do this now and if that proves to be a problem, we'll do
that later.” Or, “Here's this code that does expect this.” Or, “Here's how
we did it in this other case.” Or, “Here's what the spec actually says.”
Those kinds of things.

 They are certainly stylistic deviations. But the rule there tends to be, when

in Rome. So, you know, whatever code you're editing, you should look
like--the code you put in should look like the, you know, the code that was
already there. And in some areas, the code style is consistent enough that
you can really do that, sort of lose your code in the rest of it and it blends
in well. And in some it's—a lot of that code pre-dates that kind of
discipline, or just wasn't written with it in mind. So there are some—there
are occasional clashes there.

 It seems to not be a huge, huge problem. There’s—the most common

form, I think, is a difference of opinion about when code is ready—when
code is good enough to be put in and what can be fixed later, and sort of
what the relative time value of that software is. And of course, as in all

 Shaver1128
Page 13

software projects, probably in all endeavors of man, often saying, I'll do it
later, means it won't get done. Because it's, you know, it's not blocking
this thing that you needed and there's lots of other stuff to do. So—and
people are rightly wary of that in many cases.

 But I think generally we're—whether it's always sort of agreed with

spiritually or not, people sort of know what to expect in a given module
about what's going to be accepted in and what's not. And so those things
tend to not be a huge problem and new contributors that come in tend to
be pretty receptive to learning how things should be. Sometimes
frustrated by the review cycle and the number of details that are involved
in it. But that's a cost of the complexity of the software we're using and
wanting it to work well on all these platforms, and perform well and have
good code size. So they tend to see the value of it, even if it's frustrating
initially.

 Q: Do you see any sort of repeated tensions between people who work on the

front end and people who work on the back end?

A: Yeah, I think you see tensions between any module—any, you know,

arbitrarily chosen pair of modules, where—and I mean, it can be in a form
of, you know, I'm the caller of this code and I think it should do this for
me. Or, versus I think the call—you know, the code that's calling in
should make sure this is the case and I shouldn't have to defend against
that or penalize all the other callers for it.

 More often, we see a need to get people on the same page with respect to

what's going to be compatible and what's not. What are the important use
cases and what are the important calling patterns. The compatibility one is
really important because especially when it comes to binary compatibility,
you sort of have it at the whole system or you don't have it anywhere.

 You can't--it's hard for us to say, you know, these pieces are staying the

same and that's really valuable, but this other piece is going to change a lot
and it's hard to describe to people which extensions will break for that. It's
hard to know how to maintain those things in parallel. So we really all
need to be on the same page about that stuff.

 I think the biggest other source of tension, is just around scheduling. How

late can features and changes come in? Who's responsible for those
things? You know, if code goes into a module that the—on a—you know,
on a branch for a product, that the module owner didn't like, are they—are
they still sort of expected, in whatever volunteer sense, to help find and
diagnose bugs in that code?

 Shaver1128
Page 14

 If they don't want to maintain something on two branches, do they have to
care about that other branch at all? How much is that borne by people
who take care of minority platforms or older versions or unofficial apps?
And that's certainly an area that's very fruitful for discussion within the
community.

 Yeah, I mean, I think you get tension in the economic sense. There are

definitely scarce resources of programmer time and software complexity
and calendar time to be meted out, or doled out. And people advocate for
their position, I think almost universally in good faith. And where there
are differences of opinion, we, you know, only one of those things can go
in the code.

 Even, you know, choosing to do both, optionally, is something we try to

avoid now because it imposes costs on both sides and leads to having a
less pleasant project to work in. But yeah, those tensions tend to be
around issues and not around, you know, a long-term sort of Hatfield and
McCoy relationship between two modules. But enough of those issues
can be cause for some pretty strained feelings.

 We had this problem as we were releasing Firefox 1.0 off of what we

called the "aviary branch," which was where Firefox and Thunderbird
were doing their work. And we'd cut that branch for—and we expected it
to be a short-lived branch. And we had expected to not take any core
changes in it and then there were a number of things that wanted—we
wanted to back port from the ongoing development. And it ended up
lasting a lot longer than we thought it would, because it--we ended up
shipping Firefox later than we thought it would, etc.

 And how that was landed and that there was changes made in one side and

not the other and regressions on those—when that code came back home
to roost, caused some pretty strained relationships there, and I and others
had to invest a fair bit of energy in getting people back at the table. I
mean, no one was going to quit over it, I don't think. But it wasn't the
most productive environment. It was hard to do sort of reasonable
judgment based work after that. People were being pretty defensive of
what they believed and in many cases, they were right—were reasonable
requirements, you know, for the code that they were ostensibly being held
responsible for. And that's certainly informed our work today on the
parallel work on Firefox 2.0 and 3.0 and on Gecko 1.8 and 1.9, around
patch discipline and landing on both branch and trunk and keeping these
things in sync and having policies around that so people know what's
expected and what they can and can't do in a given branch.

 So some good came out of that. But that was—that's sort of—that's the

one that comes to mind as being the most recent sort of major schism

 Shaver1128
Page 15

between front and back end. And that's calmed down quite a bit. There's
a much better conversation there than there was a year and a half, even
maybe a year ago, between those two groups.

Q: To what extent does Mozilla rely on the work of volunteers and maybe

how has that reliance changed over time?

A: So in one sense, Mozilla has always been virtually a hundred percent

dependent on volunteers, whether they're volunteered by a company or it's
an individual that takes it themselves, or a corporation or a—or sorry, a
school or some other organization. I mean, in a very real sense, Netscape
was volunteering its continuing involvement in the project and its work.

 We were, you know, pretty confident that that was going to last a while.

They had good reasons to do so and those are the best relationships really,
where it's not an act of charity. It's mutual assistance and whether that's
very concrete, you know, they need some piece of technology or they need
something improved in the browser for what they're doing, or trying to
preserve the health of the Web.

 So it was only, you know, relatively recently, a couple of years ago, that

we had the foundation created, which gave a legal entity and some people
who were paid by the Mozilla Foundation to work on the project. And
that's—I guess that was—those were the first sort of sets of people that
weren't volunteer in that sense.

 And today, with the corporation, in some sense as an extension of that and

that's—but in another sense, it's, again, you know, the corporation
certainly has a lot of latitude about where its energy is devoted. And, you
know, it's hard to imagine them working on something other than Mozilla,
it's sort of nonsensical. But even within that, there's a lot of volunteered
effort to work on things that are not, you know, directly related to the
corporate—the products the corporation supports. Helping, you know,
sustain the community and bringing new people in to it.

 So certainly it's always been dependent on the kindness of strangers, as it

were. I think that a lot of it though, when you talk about volunteers, it
comes across as being charitable or requiring a pretty high level of
altruism, or being fragile organizationally. That, you know, everybody
could just not show up for work tomorrow. I think that's true for a lot of—
for pretty much any software organization. People could just not show up
tomorrow at IBM or Microsoft.

 They have incentives to be there. They're all at will contracts. There's no

real penalty. It's just the lack—you know, the removal of those incentives
and Mozilla is interesting enough to enough people, that the success of

 Shaver1128
Page 16

Mozilla is a significant incentive. And there's certainly a lot of
organizations that see that and incent their employees financially. And
there are organizations that—there are individuals that see their own, you
know, see a way towards some result they want, through the Mozilla
project.

 So yeah, I like to think of them as motivated volunteers, or volunteers in

the same sense as a, you know, a modern armed forces has all volunteer
force, right? There are people who choose to be there and once they're
there, then, you know, they have incentives to stay and they do it because
they believe they'll get, you know, some return—personal or societal or
professional out of it.

Q: Why do you think most individuals volunteer?

A: Yeah, it's an interesting question and it was one we struggled with for

awhile, trying to bring more people into that. We wanted, especially early
on in the project, we were concerned about the amount of the code that
was controlled by Netscape. And it seemed like we—in order to be
successful, we needed to have, you know, more of that being done
elsewhere.

 Looking back at that in hindsight, I might feel—might have felt about that

different—a little bit differently about that if I'd thought about it
differently. But I think people come in because it's an interesting technical
challenge. There's certainly a lot of very interesting technical work that's
happening there and it's visible on the Web and a lot of people are
interested in the Web. And having, you know, we're sort of—we're, I
think, by far the, you know, the premier open source client, for the Web.

 So if you want to change the way something works, you can do that

through us. People are interested in it, because they can scratch an itch. A
lot of our contributors have come in that way. That they've been—they've
wanted something to be different. They wanted something to be fixed for
their own use.

 In some cases, because they have a social or political preference for open

source and they want to contribute to that. We're a pretty highly visible
project. I think that's where a lot of the student interest comes from, and
academic interest, is that you can get involved in this project and you can,
you know, do valuable software that you can point at on a resume or in
terms of increasing the prestige of your institution.

 And so there's certainly a lot of that there. People—I'm sure some people

do it as—today, as a way to maybe get a job, you know, being paid to
work on it. It varies a lot, person to person. I think the technical

 Shaver1128
Page 17

challenge piece of it and the, you know, contributing to the health of the
Web, are probably the two dominant ones that are not financial. And
those are—those tend to be better served through companies that are
employing people to work on various pieces of Mozilla.

Q: When you were a volunteer, volunteer for Mozilla, what was your primary

reason?

A: Inertia. No! I mean, I—yeah, I had a lot of—part of the—I say that half

jokingly. I mean, part of it is just that there was a lot of emotional energy
invested in it and I really did believe that the Web was important for a lot
of people. And to serve them well, it needed to—you needed to maintain
choice there. You needed to make sure there was—it wasn't just the
confluence of differently aligned corporate interests.

 And that—those can get you a long way. A lot of great technology and

even social advances that have come out of that, kind of commercial
competition. But also because I saw a lot of promise in the Mozilla
technology for making things easier or more possible on the Web and
I like to build applications, and as a software developer, you know, I
wanted to be able to use those things.

 And there were a lot of people in that community that I had bonds with. It

developed through my work in Mozilla and I wanted to help them be
successful as well. Yeah, I mean, some of that is whatever neuro chemical
imbalance that makes it hard for me to say no to those sorts of requests.
But a lot of it is, I think there was a lot of promise in Mozilla and there
obviously—I still believe there is. And to whatever extent I could
contribute to that, I wanted to.

 And yeah, it was fun and it was something I took quite a bit of pride from.

And certainly during the period in which we were, you know, open
source's greatest failure and, you know, people pointed, "Don't want my
project to turn out like Mozilla. Nobody contributes to it, and it's big and
slow and took years and years to get a release out."

 I really did think we'd done a lot of work there. So pushing out Mozilla

1.0 was not hard at all to justify to myself. And, you know, I sort of
teetered there between really wanting to be involved and being kind of
burnt out on it for a couple of years because there was such a high level of
emotional investment and a lot of overlap between my professional and
personal life there.

 But I'm in a much more balanced place now. And I think a lot of those

motivations remain today, that it's a little easier to play to them now
because it's easier to demonstrate them, it's easier to show what, you

 Shaver1128
Page 18

know, open source available cross platform, you know, user centric, you
know, our technology can do—you can point to what Firefox and
Thunderbird have done. As before, it really required a leap of faith to see
that that could happen.

 And, you know, it was by no means inevitable. We didn't—you know, we

couldn't predict the lottery numbers ahead of time, and to some extent we
got lucky with Firefox. But to some extent we were unlucky that we didn't
have anything like Firefox for the preceding four or five years. I think we
made that luck in a lot of ways.

 And now, for a lot of us, I think, certainly for me, it's about using that

leverage we have now and the resources we have at our disposal in terms
of our brand, in terms of revenue, in terms of the reach of the community,
in terms of the influences in the industry and other industries. And, you
know, social organizations and policy groups to make sure that the Web
moves the way we feel it should for the rest of the world.

 And, you know, at the end of the day, we're—a lot of us, and certainly the

foundation and corporation, are paid to use our judgment about where we
should go. And that's a—you know, if you believe in the future of
network software being something that's available and open and universal,
it's hard to imagine where else you'd be, to work on this sort of thing. Be
able to have this kind of incredibly leveraged impact on technology people
use every day. Yeah, it's hard to imagine why you'd be somewhere else.
Hard for me to imagine being somewhere else.

 Today, I mean, I might get a great offer tomorrow and then we'll have to

go back and edit this whole thing out but—

Q: Why do you think Firefox in particular, but other Mozilla products too,

have been able to—has been able to attract so many users?

A: So yeah, I mean, Firefox is the—probably the easiest one to talk about

there. Because it's been such a dramatic attraction of users in such a
relatively short period of time and in a market that was so locked down.
Part of it is that the—you know, it was addressing demand and there was a
period there where the security record of Internet Explorer was bad and
painful enough to people that they were looking for alternatives—and spy
ware and pop-ups and so forth. And one of the things that manifested in
Firefox, that's always been a part of Mozilla, and people were going to be
able to see through Firefox, was that the software is really about putting
the user in control. And it's not just about things like pop-up blocking and
sort of explicit controls on limiting content, but it's also around making
sure that the primary thing that the tool is doing, isn't, you know, selling
you something through, you know, the old Netscape personal toolbar. The

 Shaver1128
Page 19

shop button. It's not about profiling specific, you know, partners through a
revenue deal.

 It's about focusing on what you want to do on the Internet. On being

simple enough that anybody could use it. On being pleasant enough that
you can expect more from the Web. And the fact that the Web browser
industry had largely been stagnant for—for most people it had been totally
stagnant for five years, at that point, four or five years.

 In one sense we didn't have—we wouldn't have had to a lot in order to

come in and be credible there. But I think in order to really achieve
critical mass, to have sort of an escape velocity, for people switching
browsers. Which of course all of these sort of layers of understanding
underneath, that there is a browser, right? That a lot of—for a lot of
people, the Internet is what they get when they click on the "e" and there's
no real difference for them—they don’t understand the difference between
I’m using Google and I'm using a browser to use—to reach Google.

 And there are lots of great analogies there between, you know, the

difference between a TV channel and your television and that sort of
thing. But having people understand that and having people understand
what the effects of their choice could be, is huge. I think IE 7 will help us
a lot in that regard. Microsoft's going to spend a lot of money talking to
people about what the browser is and how the quality of the browser can
impact their lives. I'm all for that.

 But I think we had a good user experience. You know, it's hard to point at

specific pieces there. Tab browsing and search and pop-up blocking—you
can do feature checklist stuff. But I think we did what Joel Spolsky talks
about software, consumer software needs to do, which is create an
emotional contact. It was pleasant to use, it felt like it was on your side. It
looked nice, it didn't get in your way.

 We spent a lot of energy on making it faster and on making it smaller. So

you're—you know, you go from, “I'd like to try that,” to, “I'm using it,” in
as short a period of time as possible and I think people just found it
refreshing. And I think some people switched away because they wanted
to vote with their feet. Some of them switched away because they wanted
open source. And I think a lot of people switched away because they had a
better experience, and they heard from somebody they'd have a better
experience with it.

 And at the end of the day, I think that's the test for all of Firefox's future

work, is, is the user going to have a better experience with this than
without this, for anything we put in. You know, as we have more users
and as we have, you know, more technical capabilities, we can build on

 Shaver1128
Page 20

the, you know, each version going forward, we—you know, we want to
make sure it's still accessible to everybody. We want to make sure people
understand how to do things with the browser that it doesn't get in their
way or require them to learn a lot.

 But I think we also have an important opportunity to help people become

more demanding Web citizens. That they should expect to be able to get
more of their content and their experiences on their terms. That we should
be able to provide powerful tools for, you know, bookmark management,
that lets them do more with their personal subset of the Web.

 And we shouldn't be afraid of putting in features that are—that require the

user to be more involved or more invested in their Web experience.
Especially if they can get there incrementally and, you know, there's a
friendly ramp up to it and they get some early value from it. I think we do
ourselves, and I think we do the Web a service, by having people expect
more from us and from their software and from the Web and to be more in
control of that.

That's something that was missing for a long time. People were very
disconnected from the development of the Web. They felt like it was
something they would just consume. Even a lot of technologists. But
certainly a lot of, you know, lay people didn't really feel like they could
influence how the Web was. It was, you know, “Are there a lot of pop-up
ads? That's just how the Web is,” right?

 “Does it not appear in my language? That's just how the Web is.” “ Can I

use it with a screen reader? Not so much? That's just the nature of the
Web,” right? Vegetarians can't eat steak, I can't use the Web. And I think
we want to get people away from that.

 People say, "Why can't I do this? I want to build this thing, I should be

able to do that on the Web? Why can't I? You know, what needs to
happen for that to be possible? Why can't I get the full Web on my device
or on my television or in my language?" And that will, of course, you
know, “backfire,” you can't see the air quotes on the tape, in that we'll
have much more demanding users and they will demand things from us
and we'll have to satisfy them or they'll go somewhere else.

 But, you know, even users switching from IE 6 to IE 7, in some ways, is a

victory for us. Not as huge a victory as it might be for them to come to
Firefox. But for people to be consciously choosing IE 7 over Firefox
versus falling, just sort of using IE 6 because it's there and they don't know
they have a choice, so they don't have a choice, that's way better.

 Shaver1128
Page 21

 You know, if the world were very different and, you know, there were a
number of browser choices that let people express their desires in a
marketplace sense and that could help reach some of these niche, you
know, smaller markets that don't get localizations in their language or
work on their platform, then we might not have needed to do something
like Firefox. We'd be able to focus our energies differently.

 But for now, presenting that choice and, you know, creating demand, as

Galbraith said, showing people what's possible and making them want it.
Not only in our product, but in others, I think is an important part of what
we do.

Q: How important was the—the sort of small team that worked on Firefox's

UI, to the development of Firefox?

A: I think in one sense, it was vital. I think the nature of the Firefox

application, sort of the core values that it—I mean, there's the sets of stuff
we talk about in the FAQ. And that, you know, it's in the manifesto and so
forth. But that's not as important to me as the values it sort of expresses in
its conversation with the user.

 And a lot of those were set out boldly by that original team. And they

knew what they wanted and they were going to build it and if people didn't
like it, then they didn't like it. But they were going to stick to their, you
know, they really believed that there was a market for this in the
commercial and social sense.

 So I think that was very important. I think one of the things we've had a

bit of a challenge with, is figuring how to scale that. We want to do more
things and design more things than one or two people can do. And
certainly, I don't think, you know, Ben wants to burn himself out, as he did
on that Firefox 1.0 cycle.

 So we know we need to broaden that. We need to broaden the number of

minds that can contribute to solving these problems. But we don't want to
dilute the design ethic. And I think, you know, that original team, Ben and
Blake and Dave, would say that it's not necessarily about them making the
decisions. It's not necessarily even that, you know, they can't make any
bad decisions about UI or design, or that it has to be what they would
prefer.

 But that those core values about, you know, simplicity and approachability

and putting the user in control and it being pleasant to use, need to be
manifested in all the things we do. And, you know, that's where things
like tab browsing and the search bar and so forth, come from, is, we think

 Shaver1128
Page 22

it makes it easier and more pleasant to use the Web and we want more
people to use the Web for everything they do.

 But I think that—from the perspective of kicking off, you know, a project

that was so different from what they were doing and moving on it quickly
and keeping it coherent—I don't know of any way to do that that doesn't
involve a small team. And we're trying to figure out how to do that with
more of the project. The extensions space has been a great example for
this too. Where, you know, you can mix and match a bunch of these
things, and some of them don’t taste great together.

 But a lot of them have great ideas and it's one or two people and they're

able to focus on this piece. And then we have to figure out how they fit
together in a coherent whole. But in terms of exploring the value around a
given feature or a given way of interacting, you know, Firefox is a great
platform for that now and we need to figure out how to do more of that.
Bring more of that disparate energy and parallel innovation, from the
extension space and people's research into the Firefox process as well.

And that's something I know, you know, Mike Beltzner and Mike Connor
and Chris Beard and Ben and Shrep and myself, pretty much everybody
that's involved in the product, you know, has in the back of their mind,
how are we going to scale this? How are we going to do more of these
things and bring more of that innovation to—that's appropriate, closer to
our huge user base, so they all get the benefit of it?

Q: What role do you think marketing has in attracting the users to Firefox?

And specifically what role do you think Spread Firefox plays? Like, do
you think that professional marketers are crucial and necessary? Or do
you think sort of developers can kind of create a certain base of volunteers
and then just sort of let them run with it?

A: Well, yeah. I think that there's certainly—there are a lot of people out

there who aren't using Firefox, not because it doesn't work well for them
or better for them than what they're using, and not because they can't, but
because they don't know about it. And for a lot—reaching a lot of those
users, I think, traditional media channels, the perhaps not traditional
marketing approach, is probably our best bet. It's an understood play. We
don't have to invent everything from scratch. We don't have to figure out
how that—we can get help.

 But I think there—for a lot of the people we want to reach as well, they're

not going to be as responsive to that, and I think we need to do stuff in
both of those spaces. I think Spread Firefox was tremendous in—not only
in raising awareness of Firefox, but in raising awareness of how what we

 Shaver1128
Page 23

were trying to do was different from just producing a software and just
from producing a product we wanted users to be using.

We wanted to create a community of investment in the product and in the
technology and in, you know, the open source project that wasn't just
technologists, it wasn't just people building software and things on the
periphery of software. It was about, you know, helping us understand how
to reach and serve people in different regions or with different preferences
or different affinity groups. How to apply the breadth of open source
techniques and, you know, collaborative development and, you know, sort
of right of self-determination to marketing. How to balance that stuff with
trademark protection and protection of the brand and, you know, who's
speaking for Mozilla and who's not?

 I think we couldn't have got—it would be almost impossible for us to run

a, you know, traditional professional or commercial marketing campaign
without the benefit of the foundation of Spread Firefox and the sort of
community involvement there. And it's attracted a lot of great people,
many of whom are professionally involved in some facet of advertising or
marketing.

But I think that that kind of—whether it's Spread Firefox or something
like that, I think that kind of connection between the people who are
doing—you know, actually speaking to another human about the product
and are thinking about, "How can I reach the people who are near me who
are in my context best, about Firefox?" I think those connections are very
valuable, and those connections have probably a higher level of stickiness,
a higher, you know, take-rate, whatever the measurement is, than a
broadcast through, you know, the Super Bowl ad or, you know, traditional
media buy. But to get to a lot of—you know, a lot of people watch the
Super Bowl, and a lot of people who watch the Super Bowl would
probably be interested in people that do different things on the Web.

 The other really valuable thing about Spread Firefox and—you know, it's

a value we did on the technical side as well is, there's a great story about
the story there, right? Taking a two-page ad in the New York Times to talk
about your product, you know, your little scrappy startup, that's kind of
news. Having, you know, however many thousands of volunteers chip in
money out of their pocket to do this, basically on faith, right? This guy
said, "I'm going to run an ad," and he'd been around the community for a
while and people said, "Great, I'd get in on that."

 That's not just an ad. That's not just a product, right? And that's

something that people talk about. And that's something that helps us make
sure that there's stories and there's awareness of the fact that we're
different, not just a software. And that people can get involved if they

 Shaver1128
Page 24

choose to and why they might want to be involved, and the kinds of
people who are involved, right? It's not all the traditional open-source
crowd, though I absolutely have nothing against my fellow traditional
open-source crowd. You know, it's people who have never done anything
like that before. It's people who've never told somebody else about a piece
of software or, you know, put a sticker for a piece of software on their car.

 We've had people come up and say, "You know, I really want to get

Firefox." You know, they hear I work on it. But it's like, "What is
Firefox?" They don't know, but they know that all the, you know, all the
people in their office or their kids or, you know, people in their dorm are
talking about it. In the dorms I think they tend to actually know what
Firefox is. We have pretty good market coverage there.

 But I think our Spread Firefox style of work is enhanced by having some

of the professional tools and outreach out of it. I think that our traditional
media channel marketing couldn't be anywhere near as effective as we
need it to be without that base. I mean, Firefox Flicks is a great example
of this, right? It's Spread Firefox in the way these things kind of get
pulled together, and it's, you know, traditional commercial marketing in
that we had an awards dinner and we had these, you know, celebrity
judges and we have connections with the film festivals and so forth about
airing these things.

 But the film festivals wouldn't be interested if it didn't have a story behind

it, and we wouldn't have as much a community interest there if they
didn't—if there wasn't the ability for this stuff they're doing to reach more
people. And I don't really see them in conflict. I think people who work
on Spread Firefox work on it because they want to help Firefox succeed.
You know, if the marketers are going to help with that, if we're going to
get—you know, we're going to pay or we get partners to help pay for
marketing that reaches new sets of people, I think everybody's on side
with that. And I know everybody we've talked to that we've had any
interest in at all on working with the professional marketing side, if you
will, has been fascinated by the energy and breadth of the Spread Firefox
community and other, you know, other marketing sort of communities in
our world.

Q: And why have marketing efforts mainly been focused on Firefox as

opposed to other Mozilla products?

A: The only other sort of real Mozilla product today is Thunderbird, and I

think for a lot of—we're better at consumer software than we are at any
other kind of software. And sometimes that's very frustrating for our
enterprise partners and sometimes that's frustrating for the developers who
want to make these things work better in the enterprise. For a lot of

 Shaver1128
Page 25

consumers, mail is Web mail. Everybody uses a browser. Many fewer
people, especially individuals who control the software on their machine
or could decide to try something new, are using mail clients.

 I think it's also a harder transition to get right. There's a lot of value

trapped in mail. It's harder to go back. They're more complex systems to
configure and to get it right. And certainly, you know, the Thunderbird
team's done a great job at ever improving the migration experience. But I
don't know, I think it's—there's also a lot more stuff you can—a lot more
interesting stuff you can do with the Web today than you can do with mail.
You know, mail's sort of the Internet's killer app in the sense of, you
know, making it happen, and the Internet couldn't survive without it.

 But you can do a lot more different things on the Web than you can with

mail, and I think that's why it's been more receptive—people have been
more receptive to it. And I think that, you know, marketing focusing on
that is really a matter of playing to our strengths. There's a lot of energy
around it, and we want to amplify that. It's a lot harder for us to, you
know, create that demand, certainly in the areas we've been marketing in.
I think internationally the story may be different. Thunderbird's big in
Japan, as they say, and in some parts of Europe. Much bigger than it is in
North America where for a consumer it's usually Web mail is their mail.
So that may be something that as we broaden our international focus we
see more marketing efforts around.

 But I think for now the other thing is just that, you know, we can only do

so much, and Firefox is at least as much as we can handle from that
perspective. We have to trade stuff off there already, and it's also, I think,
personally, I don't think this is necessarily policy, but I think it's easier for
us to convert additional Firefox success into Thunderbird success later
than the other way around. I think it's easier to—the value proposition for
the browser is clearer. It's easier to convert people that way than from a
mail client to the Web. That's sort of my gut, anyway. I don't know that
we will ever be able to run experiments to validate that, but yeah. And it's
been working. There's a lot of energy around Firefox. There's a lot of
people interested in making it more successful.

 There's certainly energy around Thunderbird as well, but I think the scale

is different and I think a lot of it just comes down to the fact that more
people are interested in a browser and interested in the Web than are
interested in mail. And we need to just sort of operate in that context.

Q: Okay. How would you list Mozilla's priorities? And since you've been

with Mozilla for a while in one fashion or another, how do you think, or
have priorities changed over time?

 Shaver1128
Page 26

A: I think when we started out our priority was to be a healthy open-source
project. That was really the only aim we had. You know, we wanted to
produce good technology and, you know, conform to all the standards and
run everywhere for everybody. But really what we were focusing a lot of
our energy on and worrying about a lot was, are we going to be an open-
source project that has its own life, or will we be, you know, something
Netscape throws over the wall? And that was--quite a lot of our energy. It
was a hard thing. There's lots of reason why—or maybe they're just
excuses—why that was a hard nut for us to crack.

 I think now we're a little more confident that we can do the right thing

with the software and with the goal and what the results we want to have
of that project are. And we're confident enough in it that we believe
people will come along. That there's people out there who are like-minded
and will contribute that way, whether for reasons of technical interest or
sort of social alignment.

 I think our priorities are the health of the Web. I mean, I think that really

underlies pretty much all of what we do. I think a healthy Web is
important to us because it touches a lot of people and because it can be an
enabler for a lot of different kinds of experiences and improvements in,
you know, global society. That there's a lot of potential there, and for that
potential to be realized the Web needs to continue to be open and
available. It needs to continue to be something where users, individual
people, you know, the human at the keyboard, has choice and isn't
excluded because of language, disability, choice of platform. You know,
the $100 laptop versus the Alienware gaming rig. You should be able to
experience to a large degree the same Web.

 And so I think that, you know, that's sort of our—it's not even a goal,

really. It's the virtue. It's the reason for being. And I think our goals
around that are, you know, success of the—from the corporation's
perspective, success of the product in helping users get the most out of the
Web, and their mail in the Thunderbird case, and helping create and
sustain a culture of continual improvement on the Web. We don't want
the Web to fall back into a stagnant state. We don't want browsers to be
frozen in stasis like Hans Solo for five years.

 I mean, so that's—we wake up in the morning. How do you decide what

you're going to work on that day? And for a lot of us I think that's what it
is. It's how are we going to make sure that this—you know, Firefox
reaching users gives us more leverage over the Web and improves, we
believe, the lot of those users. You know, when we talk to potential
partners and we talk to organizations that want to work with us, you know,
explain to them our sort of, three priorities there are for determining what
happens with the product.

 Shaver1128
Page 27

 First is user experience, right? Is this going to be better for the user? The

second is, you know, we're interested in distribution. How do we get the
product to more people? There are a lot of people in the world who can't
or won't download software, so right now they're out of reach to us, with a
couple of exceptions. The Google software pack and one OEM bundling
deal we had as an experiment. And the third is revenue, which is really
sort of a synonym for resources applicable to the project. Money is easy
to convert in a lot of ways, into headcount, into marketing, into other kinds
of resources, infrastructure for the project. But getting those things
directly is also fine, too. And that's there because we can invest those
things in improving the user experience and distribution, again, sort of in
service of—we believe that a better Firefox in the hands of more people
will help us improve the Web, even beyond the improvement of the Web
that it will cause just by having that be the case. So we do a lot of things
in service of that.

 And we invest in other sort of longer or side elements, too, around helping

people build things on the Web, helping people build things in Firefox,
extensions in Web services. Making it easier to localize. Making it more
accessible. Which are in some senses sort of longer term plays, making
Web technology applicable to more people, helping people do more things
on the Web. You don't want to wake up and have the next Gmail be a
XAML app somewhere or a Cocoa app even, that can only run in this
given environment and reduces the user's choice of how to interact with it.

 So we have investments in the platform, we call it, in the technology that's

ours and also that's sort of the core of the Web. But in some ways they're
also very short-term investments for us and they reflect very quickly on
the product, right? The breadth of the extension community and the
number of different things you can get to plug into your browser to make
it your browser, has been a huge selling point for us in a lot of areas, and it
lets us keep the core small and focused. And where there is a feature that's
significant to a significant number of people, but is, you know, too much
of a user experience cost to bear for everybody if they're not using it, it
can be provided well through an extension. And that's been very
important for us, and, you know, people grow attached to their extensions
and they're attracted into the Firefox community that way. And again,
they expect more from the Web and from other browsers and technology.
So we get a lot of short-term return on that as well, which is nice to see.

Q: Could you briefly describe the relationship between the corporation and

the foundation?

A: Sure. The corporation has one shareholder, which is the foundation. The

corporation's job is to build the products and technology that further the

 Shaver1128
Page 28

Mozilla Foundation's mission. Mozilla Foundation has as a mission
choice and innovation on the Internet, and they have a small staff that does
project governance and [indiscernible] that stuff. And I think they like we,
are trying to sort of figure out their best path forward. So Mozilla
Corporation is about—perhaps obviously, wholly owned. It's taxable but
it's not really for-profit in the normal use of that sense in that nobody gets
paid out on a basis of that profit. The money goes back to our single
shareholder, which is the foundation, where it goes anywhere. Virtually
all of it's invested right back into the project in short term.

 And it's the product, it's the software product wing or tool or platoon of the

foundation. So we're where the software happens in service of the
foundation's goals. And right now most of what the foundation is doing,
sort of the Mozilla group of companies, right, the foundation in a larger
sense, most of what we are doing is around building software and making
sure the right software's built and gets to the right people. So most of the
resources of the foundation that are being spent right now are being
expended through the corporation.

 But the foundation is to a large degree, in control there, and, you know, we

have a fair bit of autonomy. We don't call the board up every time we
want to make a bug fix. But our goals and targets are set by the
corporation board and by the foundation board, and we do, I think, all of
us see ourselves as doing a different facet of the foundation's work and
making their tax lives easier by not trying to convince the IRS that there's
a role for non-profit tax—non-profit software creation that generates a lot
of revenue.

 In a lot of ways it was an administrative change when the corporation was

spun out, right, a lot of the same people working with the same people
doing the same things. We were able to do a lot of things we weren't able
to do before. We're able to do some things much more easily. And yeah, I
think it's worked pretty well.

 There's a cost to the level of interaction there. We need to coordinate

those things, and we disagree sometimes about the relative value of
different types of work or investment. Not usually fiscal investment, but
dedication of resources. But that's all pretty standard fare. I think the
corporation's an interesting model, too, for showing how what in some
sense is a traditional software company. We're a software company.
We're built on an open-source framework and so forth. But in a lot of
ways, a lot of good ways I think, we're a software company. And how that
can be done in a way that's in service of a social goal and still be quite
effective at delivering good software and in focusing on that software. So
I like to think we're setting a good example for people. And if not, they'll

 Shaver1128
Page 29

learn from our mistakes. So a cautionary tale or a guiding light, we can
really win either way.

Q: When Chase Phillips left the corporation, he said that he basically was

lacking knowledge of where the place as a whole was headed. How would
you respond to that characterization, and do you feel like—have other
people sort of raised those types of concerns?

A: Yeah. I think—the project goes through this periodically where there's a

major change in context or in community disposition. There's a lot of
stuff going on, and it's not always clear who's talking to who, who's
making what decisions. I think that certainly within the corporation
operationally there was a huge amount of growth that was going on, and
there were a huge number of additional things we were trying to do.
Every time we'd add one more person we'd add two more people worth of
work. And communication certainly doesn't flourish in that environment.

 I think—I was a member of the management team then. I think we

certainly could have done a better job of communicating what we were
doing. Not in the sense of what the corporation's doing but what the
people who were in those management positions were doing and trying to
solve and so forth. I think there was, you know, a need to improve
communication down the organization, if you will, but also up and also
laterally. And I think in a lot of cases people were concerned because they
weren't sure they were doing the right thing. If you don't know sort of
what other people—what the end goal is or what you're trying to achieve.
And some people are confident and will just do the right thing or what
they believe to be is the right thing. And in some cases they'll want some
sort of validation of that, some direction of that.

 Certainly I think, to a person in the corporation and the foundation there

was a huge amount of emotional investment in the work people were
doing. And that raises the stakes for a lot of these things, where it's not
just "I don't know—I don't feel like I know enough to make good
decisions about my work," but it becomes to a large degree, "I don't know
enough to make good decisions about who I am and whether I should be
working on this and whether I should be making any sacrifices." And
Chase certainly sacrificed a lot for the good of the project. And yeah, I
think he'll always be thought of fondly in Mozilla.

 So there's certainly some truth to that. I think different people saw

different paths through—I mean, a lot of people shared the desire to know
what was going on better. And we've improved that I think quite a bit
since that point. You know, it would have been, you know, good if we
could have figured out how to, you know, save Chase, as it were.
Absolutely. He was fantastic to work with, and it was certainly a loss. I

 Shaver1128
Page 30

don't think it indicated a terminal condition or critical condition in the
organization. There was certainly inefficiency that came out of it. There
was certainly a lot of energy and discomfort that was—energy that was,
you know, wasted or misdirected. And a lot of people weren't as confident
and comfortable as they could have been with what was going on.

 And part of it was just there was a huge number of new variables. There

was the corporation-foundation split. There was this, you know, we had a
product that had tens of millions of users that we had to support. We were
in a serious competitive environment. We had revenue coming in we had
to spend or figure out what to do. We didn't have to spend it, but we had
an opportunity to figure out how to use that money to further the goals of
the project. We had an organization that was growing and, you know,
how do people come into that and what does it mean to be an employee
with respect to the relationship with the project? What are our
relationships with these other projects that are going on that aren't
products? I mean, a huge number of decisions.

 And any one of those things can just consume you, right? You can end up

on the rocks of any of those pieces pretty easily. And to me it's amazing
in some ways that we didn't end up in more—you know, we came through
that as well as we did with the rate of change that was there. And there
wasn't really a model for us to follow, right? There was no—we couldn't
say, you know, "We're going to do what these guys did." You know,
you're doing a start-up and you're pitching to people, whether they're
people you want to hire or people you want to have invest, you say, you
know, "It's like this with a bit of that," you know. But it's a consumer
play. And you can sort of build in terms of these models.

 But we've never really been extremely comfortable in determining what

we're doing by analogy. We're getting more comfortable with it now and
there are more models to choose from, but to a large degree people had to
every day, you know, make those decisions from scratch. And just
because of the demands on people's time and the rate of growth and just
people wanting different things, there was a lot of opportunity there for
people to feel lost or certainly to get burned out. And I think some of that
was in play with Chase. I can't imagine he wasn't burned out given, you
know, what he was doing.

 And I think also, you know, if the environment he was in wasn't one that

was healthy for him, then it was absolutely the right thing for him and for
the project, to do something else. And that's a decision that, yeah, is only
his to make, and that he's willing to talk about why and what the
characteristics were there, and what the issues were for him, and what it
cost him and what he would have wanted instead, I'm glad he was able to

 Shaver1128
Page 31

do that. And I'm glad that we as a community and a project were able to
talk openly about a lot of those things as well.

You know, it was news for a little while that we were in huge trouble, we
were going to hemorrhage people, was it the end of the road. And you
worry that it might be because you never really know what's going to
happen tomorrow. But I think most of us were pretty confident that we
could solve these problems, and maybe not as well as we might have in
hindsight or maybe not as early as we might have liked to, but we've
improved things a lot since then. I think Chase would agree. And what
didn't kill us made us stronger, so. Yeah, it’s unfortunate. I liked working
with him a lot. He’s a great guy. I have no reason to believe he’s not still
a great guy.

Q: How would you define a successful open-source project, just sort of

broadly if you want to just talk about Mozilla or just kind of broadly?
What elements and practices do you think are sort of necessary to building
a successful project?

A: I think the most important aspect of succeeding in an open-source project

is managing expectations. I think that there are lots of different and
legitimate ways to run an open-source project. I've been lucky enough to
work with a bunch of different kinds of them in the past, and some of them
are, you know, very much like Mozilla where it's open source but it's also
a very collaborative development and it's very distributed and there's a lot
stakeholders and so forth.

 And I've worked in others where it's really, you know, a group of people

working as they might in a proprietary software, and they put the code
over the wall, their most recent release, or a previous one, under open-
source terms. And they do that because there's a market demand for it, or
it lets them take advantage of some other tools.

 I think those are both successful in meeting the goals of the project itself.

I think from the perspective, if you want to build a broad, you know, sort
of Mozilla-like project or Apache-like or Eclipse or Linux kernel, that
have a large set of contributors and build a common open-source artifact
that's the primary place of development and so forth. I think again a lot of
it comes into managing expectations of, you know, how are decisions
made here, what are the goals of the project, what happens if you disagree,
right? That's sort of the—those are the things from which you can I think,
derive if not a lot of the behavior of the project, at least how that behavior
will be determined. Is it expected that it's very democratic? Are you
trying to build something that's perfectly general? Are you trying to build

 Shaver1128
Page 32

something that's really focused? Are you trying to solve a specific
problem or to, you know, do something entirely new or exploratory?

 And I think a lot of those characteristics are shared with, you know, how

do you create a successful software project? How do you create a
successful project of any kind? And, you know, in deciding to do an
open-source project, an open-development project even, the first piece
there is, you know, “Are the things I'm trying to do made easier or better
by doing it in open source?”

 Some things—I don't believe that all software needs to be, or should be

currently, built as open source. The game industry is one classic example.
And, you know, as software becomes more economically similar to a
service, we'll probably see more and more of that change where there's
value in building this infrastructure and selling a service on top of it and
letting people maintain their own pieces of it. And it will become a
competitive issue as, you know, open standards and protocol and
interoperability have been for some time.

 But I don't think it's necessarily the case that you sort of—you should start

from the point of, "I want to create an open-source project to do X." I
think you need to start from, "I want to do X, and I want to have these be
the characteristics of what I'm going to get, and does open source fit that?"
I mean, I take as a value in a lot of the stuff that I do that it'll be open
source, whether that's Mozilla or otherwise. And I prefer to work on those
things. It will be easier to get me to take a job that involved doing stuff in
open source than doing stuff that wasn't, all else being equal. So that, you
know, might be a choice you make. "I'm going to start this company. I
want to build this system. If I make this core piece of it open source it'll
be easier for me to attract some of the talent I want or to build a
development community around it," and so forth.

 But open source as its own sort of primary good, I think is probably a—

even if it—it may well be, you know, a very virtuous thing to pursue. I
think starting from that point is probably pretty risky, especially people
who haven't done open source before and don't really understand all the
different knobs you can twist there and the ways you can work. I think
people often come in and say—when they have open-source project in
their mind, they have something probably very similar to Mozilla or the
Linux kernel, GNOME, that sort of thing, and they imagine all these
contributors working together and all this software happening and so forth.
But they don't really think about why they want that to be the case or how
much cost they're willing to bear to get that or to know what costs there
are in, you know, decision-making bandwidth or in, you know, showing
all of what you're doing to the various competitors. Or making it easier
for people to make modifications to the software you might not want.

 Shaver1128
Page 33

 The GPL is going through stuff related to this in its Version 3, which

could be a whole other hour of tape. But one of the things that's been
proposed for that is that nothing under the GPL, the third version of the
GPL, can have characteristics that limit the users' rights to, you know, fair
use of content and so forth. And I think that's a pretty dangerous slope, a
risky move for a copyright-based license. But I think it's also a case where
it may be that you have to give up something you can't afford to give up in
the context of your project in order to get open source to happen.

 And there's certainly I think, a lot of underestimation of how much energy

goes into coordinating open source. It's probably on par with proprietary
software development without the ability to fall back on the "I'm paying
your salary" stick as often. So you need I think, slightly different kind of
leadership sometimes. But proprietary software development's no piece of
cake, either, and people routinely underestimate that. So I'm not sure it's
really an open source specific thing, though your failures would tend to be
more public. You need to be sort of able to—you need to have sort of the
emotional constitution to deal with that as well.

Q: Do you consider open source software a public service?

A: That's a good question. I think people work on open source software for a

variety of reasons, one of which is that they feel it's a public service, it's a
good thing to do. There are lots of jokes to be made here about some open
source software as a public disservice, but some of the people might hear
this interview and that's just not a good scene.

 I don't know that it necessarily has to be. I mean, open source doesn't

necessarily even end up always being publicly available or useful. But I
think it certainly—I think you can do a lot of stuff with open source that
makes it easier for software to be a public good in a way that a park might
be or a way that, you know, a poem or some kind of invention or, you
know, recommendations for health can be a public good.

 I think it's interesting because software is so critical to a lot of what people

do day to day, that people having some fluency in that is important. I
think it's important for people to understand economics. I think it's
important for people to understand, you know, the way that markets
operate, the way that democracy operates, the way that, you know, basic
medicine, a lot of these things. And I think software is something that's
pervasive enough and powerful enough, both powerful in the sense that it
can affect what you're doing a lot, but also powerful in that people can—
it's highly leverageable. You can do a lot with software just by, you know,
thinking about it in the right way, basically. You're making stuff out of
pure thought stuff. And I think that's—the open source culture isn't just

 Shaver1128
Page 34

about altruism there and it's not just about providing the resulting
software. I think it's also about providing the value of the process and the
ability to understand those things in a different way.

 And, you know, it's a long way from, you know, where we are today to

people learning about, you know, software the way they learn about
history and geography in schools. I think I'd probably have them do
economics in the sort of philosophical sense first. But I think it is a side
effect of—I think it has been a side effect of free software and of open
source that it's made software more visible. It's let people have better
expectations and understanding of what software can and can't do and of
how it's put, and how it's a reflection of the people who build it the same
way, you know, any other artifact is.

 Some of the original manifestos behind free software were around ‘not

trapping’ the user. That if you had software to use some piece of
hardware, a printer driver is a common example, you should be able to get
the source for that if you got the software itself so that you could maintain
control over it. It wasn't always about, you know, putting it in the public
or being a common good or, you know, a basis for some sort of neutral
software foundation for the Internet or whatever else. And it sort of
evolved into that. And I think it's much more valuable in that sense than
just in consumer protection. But it's certainly not—I think for a lot of
people it's not just about providing a public good. I think it's nice that you
can get a good out of it in a public sense even when people contribute for
what could be very selfish motives. I guess that's, you know—Adam
Smith would tell you the same thing, right? It's not to their charity that we
owe the software we have, but to their own enlightened self-interest.

Q: What, if anything, do you think the popularity of Firefox will do for open

source as a whole?

A: I think the most important thing—so there are two things. One is that it

will expose people to the concept of open source, whether they're, you
know, aware of it. Whether they see it as a good thing or a bad thing or
they don't care. But just that there's a difference between software you
have the source for and software you don't have the source for. So you
might call the latter "hardware."

 But I think one of the biggest things and one of the more short-term things

is, it's showed that open source can produce software that's for real people.
There's been this sort of albatross around the neck of open source
software, especially stuff that is user facing, that open source software can
only be built for power users, for geeks. It can't be built in a way that—
you know, you'll never get good design out of it, even if you get good

 Shaver1128
Page 35

technology. It just can't be built that way. It can't market itself. It can
never reach these people.

 And existence proof is pretty powerful. So you can argue a lot whether

Firefox's, you know, user experience is better than some other program's
user's experience. But I think it's showed that being open source isn't the
barrier there. Turns out it's hard to make good software that is pleasant to
use. And it might be harder to do in an environment that's filled with the
kinds of people who were originally attracted to open source, just because
of their sensibilities. Not that they're lesser folk for it, but because it's not
where—not from the perspective from which they come toward building
technology, around usability and so forth.

 And what we've seen, you know, in the last couple years in the open-

source community, a real interest in the usability of their software. It's
become the holy cry that that's what matters, is the software's useable and
simple and so forth. And the pendulum can swing too far and people will
self-correct there. But I think that's been a signal value for open source
projects everywhere to demonstrate that it can be good software and that it
can be marketed and that it can reach real people. And that it can compete
with, you know, one of the most entrenched majorities, monopolies, in all
of modern software, and it can affect their product, right? We, in a lot
ways, made IE7 happen. So, you know, not a lot of commercial software
has been able to do that.

 And yeah, I think, you know, certainly there's lots of soft introductions to

building open source that come around Firefox, around extensions, around
being able to redistribute it and make little modifications and get it—you
know, it's into schools. It's into environments where it wouldn't be if you
couldn't do your own thing with it. But I think just people being aware
that similar to, you know, knowing that there's a choice of browser and
what that means. Knowing there's a choice of—or it's a characteristic of
software. People understand, you know, how long is it supported? People
understand does it run on Windows or Mac? People understand, you
know, what does it cost? Or do I pay now, or do I pay—you know, is it a
service like an online game? Do I get it upfront? Discounts? Upgrades?

 They understand a lot of things about how software operates and

interoperability and so forth, but a lot of people don't understand that there
is this difference in different kinds of software. And it may not matter to
them at all. It may not matter to somebody that their software can also run
on a Mac. They use Windows; they're happy with that. But they're aware
that this choice is there, and when it does matter to them it'll be that much
more likely that they'll be able to take advantage of it and make the right
decision for themselves, which may well not be open source but would be
an informed decision. And that's a pretty big step forward, I think.

 Shaver1128
Page 36

Q: Do you think that open-source techniques can be applied to other means of

production? Or do you see examples of that in today's society?

A: Yeah. I think, one classic example is Wikipedia, which applies a lot of the

same open source principles to collection. I can't really say "creation of
knowledge," I don't think. I have a philosophical problem with that. But
with collection, aggregation. Certainly adding a lot of value to human
knowledge. That's one example. And that might be enough of one.

 I think the areas where open source thrives are where the cost of goods are

pretty low, especially the cost of goods for someone to become involved.
Which isn't to say that's the only case, but there are people who work on
open source software together who, you know, require some expensive
MIDI keyboard or some rare piece of hardware or service that's expensive
and that kind of thing. But I think we see less of that.

 And then sort of one question that sort of follows into that is what are

open source principles? One, you sort of take it to the degenerate case,
and open source is about licensing. Open source is something only
lawyers do. Programmers don't really do it. It's about the terms of use of
that software. And so from that perspective we see, you know, user-
serviceable parts. We see a return to those. We see people being able to,
you know, mix and match parts on their bikes. You know, picking their
provider. Being able to do these sort of—and you see it in deregulation of
industry, you know, power and telephone. You know, that's similar in that
the user has a meaningful choice there. The right to modify things. We're
not seeing as much where it sort of reaches the consumer. Take the cover
off your Xbox and do something to it. And it depends on what jurisdiction
you're in whether you can actually get away with that.

 But in a lot of areas I think it will make people want to have that control

and that flexibility over other things that are in their lives. I think we'll of
course, see it—I say "of course" because I'm obviously a futurist in control
here—in things that are, you know, like software. You see it in things that
are effectively software wrapped in a box. The Linksys router, people will
load their own software onto. And the production of that system is, you
know, built on open source principles there.

 You see some of it also in, you know, community networking. And, you

know, whether that's open source principle or that's just, you know, good
old-fashioned community spirit. It's not as clear what the right—some of
the terms of art in open-source software are around the right to modify and
the preferred form of modification, making source available at the same
time. Is that, you know, sending the schematics along? Is that—you
know, how much detail is needed there? And to be fair we haven't really

 Shaver1128
Page 37

locked that down for software. Everybody basically understands what it
means and the hard cases we just ignore.

 So I think we'll see some of that. I think again that will come out of

people being more aware that, you know, it is a meaningful choice to
decide whether you're going to get something you can tinker with yourself
or have control over, or pay somebody other than the vendor to fix, to
work on. And that's an area that, you know, has had a lot of profound
competitive impact from PC versus Mac to different types of, you know,
[indiscernible] power supply and AC versus DC and those kinds of things.

Q: Last question, and it's extremely broad.

A: Oh, good.

Q: What do you think the future of open source is?

A: Well, yeah, that is pretty broad. I think the future of open source is people

picking and choosing more of these techniques and elements into different
things they do. I think the future of open source is people who are not
software developers learning how open source affects them. I think to
some extent, or maybe I just hope to some extent, the future of open
source is people demanding more of its characteristics in other things they
do. [Users] [indiscernible] parts in people deploying complex systems
or—which will likely be software at first. But having enough information
about them and the rights to modify them. Maybe to share those results.

 I think the future of open source will also be things like Wikipedia, which

are a collaborative development of non-software. Probably even tangible
sort of soft-goods things at first because again the cost of goods and
replication are low enough to reach there. I think open source is also, even
more than it is today, going to be an important tool for the sovereignty of
people's computer experiences. We talk about the sovereignty of the Web
experience, that it should be in my language, right? Whether I'm, you
know, living in California or Papua, New Guinea, I should be in control of
the software that's there. It should be in my language. It should adhere to
my cultural customs.

 You know, most of the content on the Internet, yeah, that might still be in

English. But there's an important element of sovereignty and control
there, and I think open source allows a lot of that. It allows people and
nations and organizations to take control. Not a zero cost. You know, it's
not a perpetual motion machine. You don't get this stuff for free in the
sense that you can't wish software into being. But you have the option of
making it what you want you it to be, and you get to decide about the
economics of making it happen or not.

 Shaver1128
Page 38

 And people choosing to collaborate more on different types of

development and improvement. The interesting thing about a lot of open-
source licenses is that they protect the rights to—a lot of them do—protect
some rights to derive value from things that are derivative. So you make
changes to what I do. I can use your changes. They don't all do that.
Depends on what the goals of the software license are. But you see—you
know, it sort of echoes some of the original tenets of the Western patent
system for all it may or may not have gone off the rails, that I will share
this and I'll give this contribution and if you're going to use that
contribution then I get some rights to what you do. In this case, in the
patent case, usually a royalty example.

 We're starting to see that in patent pooling. We might see it in

pharmaceuticals. We might see it in a lot of educational areas. And I
think the other sort of thing that I hope open source continues to do is to
demonstrate the different ways people of different backgrounds and
interests can collaborate to produce something of mutual value. And that
they can do that in a way that still lets them compete in a lot of ways. I
mean, Google and Yahoo are both Mozilla partners, and valuable ones.
Are they competitors? Absolutely. Do they understand the value of
making sure that the Web continues to be where the fight is? Absolutely.

And they can collaborate on this software together and they both get value
out of that, and they get value out of each other's work and they're able
to—and a lot of companies probably wouldn't be able to, you know, sort
of put that aside. But they're able to participate in that, and I think they
get a lot of value from that. I think showing those models and showing the
value of transparency of that process, that people should—you know,
people want to be able to know, you know, how that sausage was made.

 And we talk about that in the context of security a lot, right? A lot of

people—very, very few of our users read the source code to Firefox, and
even fewer of them could find security bugs that way. But they get benefit
from everybody who does. And I think that's a model that can apply to a
lot of—could apply to policy-making. It could apply to, you know,
collective bargaining. It could apply to any number of collaborative
human endeavors. And so I hope the future of open source is beyond just
software, and I hope that the software that it does produce is interesting to
more and more people, and that people discover ways to be involved that
don't involve writing code, and that more of those ways are created with
things like Spread Firefox, with things like localization communities.
And, you know, nobody knows where the next one of those will come
from.

