
Vlad24K
Page 1

Albers: Today is June 26, and if you could just say your name?

Vukicevic: Sure. I’m Vladimir Vukicevic.

Albers: Okay. So when did you first start using computers and become interested

in computers and technology?

Vukicevic: Boy, I probably first started using computers when I was around 10, I

would guess. My father is a software engineer, and I have a pretty strong
memory of—I’m originally from Serbia—and I have a pretty strong
memory of him bringing some computer home from work, one of the, you
know, very early, kind of very large boxes and him leaving it there and me
playing with it, just me fiddling with switches and, eventually, somehow
managed to fry the whole thing. That was pretty exciting because I got my
first experience with the magic blue smoke, and I got the nice burning
computer smell and had him run in, you know, “What’s going on? Oh,
what are you doing?” So I think that was kind of my earliest memory of
being interested in doing anything with computers. But pretty much ever
since then I’ve been, you know, fiddling around with various things.

Albers: So what’s your educational background? Did you have formal training in

computers or was it more, you know, through your father and self-taught,
or--?

Vukicevic: Mostly self-taught and some through my father. I, let’s see, I only did one

year of college. I was at UC Berkley for a year and after that I actually got
a job at a company out in Boston, so I never really had a college degree
type education. But before that I worked at a number of places. Yeah, like
I said, mostly self taught and just through my own interest.

Albers: And what was the—what’s the first programming project you remember

working on? Was it personal or--?

Vukicevic: I can’t really remember what the first real thing was. I remember, again,

when I was around 11 or 12 or something, I had an old Atari computer. I
remember typing in a bunch of, you know, Basic programs from the back
of some magazine and playing around with those. So that was probably
the first thing I can think of. The first kind of large thing that I worked on
was when I was 14 or 15, I had a summer internship at Stanford, and I was
working with a research group and we were working on a distributed flight
simulator. So it’s pretty interesting stuff. It was kind of my first experience
with any kind of computer graphic stuff, and it was nice to see kind of my
work causing little things to fly around and blow up and do that kind of
thing. That was kind of my first big project that I worked on that I can
think of.

Vlad24K
Page 2

Albers: How did you first connect with Open Source, or first start working with
Open Source projects?

Vukicevic: I think mainly my connections to Open Source were originally just

through my own interest in computers. And so because I was self-taught
most of the resources that I had were what I could get on the Internet. So
back in the early days through, you know, just e-mail and mailing lists and
gofur, and then eventually through the web. So the easiest thing to get
access to was Linux and kind of the Open Source tools that were there. So
just through that, my interest in kind of playing around with that kind of
grew around Open Source.

Albers: And when did you start sort of contributing?

Vukicevic: I started contributing in some limited ways pretty early on. I worked at

SGI—again as a summer intern during high school—but we were working
on the GNU Ada translator data compiler that was part of the GCC
compiler package. So I had a few small patches that went into that. I was
mainly working on SGI specific stuff there. But those were kind of my
first contributions at that point.

Albers: So then what do you do here at Mozilla?

Vukicevic: I do—it’s funny, everybody asks me that question. And I don’t really

know where to start. I ended up doing a lot of things. I find it hard for
myself to kind of focus on one specific area to work on. So, kind of my
main focus here is working on the Mozilla graphics infrastructure. So our
whole rendering back end, how the actual pixels and how the text actually
gets onto the screen. But along with that, I’m also involved in some
performance testing, performance measurement. I’m involved in some
build tools like, I’m working on a little project that lets you graph
performance results and kind of compare different versions of Mozilla,
how much we’ve slowed down, how much we’ve gotten faster, that sort of
thing.

 I’m also interested in web standards. So I’m involved in developing a

couple of, again, graphic specific stuff. So mainly graphics, but some
graphic specific web standards for web applications. So, a bunch of
different things.

Albers: And how was it that you came to work here?

Vukicevic: Through—I came to work here through a friend of mine, Mike Shaver. We

met probably in 2001, I think, when I was working in the company called
Ximian out in Boston. And I didn’t really know him too well back then.
He was on our advisory board, and he came down from Toronto a couple

Vlad24K
Page 3

of times, but we became friends. I eventually left Ximian, and I spent two
years working on a photography degree out in San Francisco. At some
point during that I mentioned to him that I was interested in getting back
into having an actual job, because it turns out you actually have more free
time when you’re actually employed than it does when you’re in school.
So he said that--he wasn’t doing much Mozilla stuff then, but he was
thinking about leaving the project that he was working on and going to
start up a small group to work on the Mozilla Calendar. So he asked me if
I was interested in joining him there, and I said, “Maybe.” He said, “Well,
you know, you should get familiar with the Firefox code base and the
Firefox work.” So he asked me to work on a project for Firefox 1.0, which
was the live bookmarks feature. So I spent probably about two months
during that summer working on that, getting myself familiar with Mozilla.
That was kind of my first involvement with Mozilla, and I really enjoyed
the experience. I enjoyed the community. So that’s kind of really where it
all began. It was pretty exciting to see my work shipped with Firefox 1.0,
become part of that release.

Albers: So have you mostly worked on Firefox, or do you contribute to other

Mozilla projects also?

Vukicevic: When I was working with Mike the first year, we focused mainly on the

Mozilla Calendar pieces. So we rewrote large pieces of the Calendar and
we integrated it with Thunderbird. And Dan Mosedale is actually taking
over that work right now, him and a number of people that work with him.
So I’ve contributed to the Calendar but not that much any more. So
currently most of my work is Firefox, both the front and the back end.

Albers: Do you find that you’re generally working alone, or in group settings, or

both?

Vukicevic: That’s an interesting question with the kind of community that we have.

Most of my work, well, especially my specific graphics work, I work
pretty closely with Stuart Parmenter because both of us were kind of
assigned to work on the graphics infrastructure. So we work pretty closely
together, so that’s definitely a team effort. But even within that, most kind
of individual tasks, I tend to work on alone but with input from other
people. So because of the whole community aspect of the project, it’s very
hard for anybody to accomplish anything by themselves. A number of
people—we have some people in the community who try to do that, and
they go out and they spend, you know, a couple of months working on just
one specific thing without really working with anybody, talking to
anybody. But then when they’re done, or when they think they’re done,
and they come back and present it, they often don’t get a very good
reception because it’s just this big thing that comes out of nowhere. So

Vlad24K
Page 4

most of my work ends up being fairly individual but definitely in
communication with other people at the same time.

Albers: And when you’re working with other people, how is the division of labor

sort of determined?

Vukicevic: In what way?

Albers: Like how do you—so, you know, you’re working with a few other people

on something, how do you figure out who’s going to actually do what to
finish up work that needs to be done?

Vukicevic: Right. Right. I don’t think that there is any specific method to deciding the

division of labor. Usually, it’s based on whoever has the most knowledge
of whatever specific pieces need to be done. And most of the time it’s
pretty clear who should work on what piece, especially if there’s kind of a
larger project involved. Sometimes, depending on how overloaded
somebody is, somebody else might decide to take over a bigger piece from
them instead of having them do it, even if they might be the logical person
to work on it. But there’s very little kind of assignment. There’s very little
of some kind of manager type saying, “You work on this. You work on
this. You work on this.” People kind of self-decide and self-choose what
they’re going to work on for the most part.

Albers: So it doesn’t ever seem like someone’s really in charge of or sort of

directing the project in a certain way?

Vukicevic: No, not at all. No. I mean, the project is basically directed by the people

who contribute to it. We certainly, and especially at the Corporation, we
receive a lot of input from, you know, management, around what features
we should focus on, but for the most part those features are things that
would be important for us anyway. So I don’t think that there’s ever been
a case where, at least that I can think of, where there has been something
that’s come down from kind of the product management side that the
engineers or the community has been dead set against. Because I think that
kind of clash would be very dangerous to the community, to the project,
and so we pretty much stay away from that, and it’s been a pretty good
relationship.

Albers: How do you generally communicate with the people that you’re working

with?

Vukicevic: Mostly electronically. The communication tends to happen a lot through

IRC, through Internet Relay Chat. Sometimes through IM. Often through
mailing lists and user groups, and a lot of the communication also goes
through Bugzilla, our bug management system.

Vlad24K
Page 5

Albers: Do you find, you know, one forum more useful for certain tasks of what,

you know, IRC for, you know, something that you wouldn’t use a mailing
list for that you would use Bugzilla for?

Vukicevic: There are definitely different uses. IRC tends to be more quick

communication and for quickly discussing things and asking simple
questions. Bugzilla is very useful for, especially recording problems or
recording solutions. It’s having that history of being able to go back and
examine how was a similar problem solved in the past or, you know, if
there were any previous problems in a particular area of the code that
you’re working on. And then the mailing lists, I kind of have a love/hate
relationship with the mailing lists because I think that they can be useful
because they give people a chance to think about what their response is
when they’re discussing something, and it lets people write longer
responses without having to have somebody actually like listen to them,
like on IRC. But at the same time, it also makes it very easy for people
to—who don’t want to actually think about what they’re writing and what
they’re contributing there, to just throw out little simple answers or little
questions that aren’t really relevant to the actual discussion. So there’s a
lot of, I think there’s a higher noise ratio on the mailing lists than some of
the other forums.

Albers: Do you think that sometimes the more hidden forums though, like IRC or

personal e-mails, that that is problematic on an Open Source project, you
know, where someone might want to join and, you know, they’re missing
large chunks of the discussion that might have gone on--?

Vukicevic: Yeah, it definitely can be problematic. We try to stay away from personal

e-mails, where you’re mostly kind of a small select group as much as we
can. Sometimes, I might jot off an e-mail to some people and say, you
know, “Hey, is this a good idea?” And then, you know, if it does sound
like a good idea, then we’ll say, “Let’s move this to the mailing lists,” or,
you know, “Let’s file a bug and take this discussion in there.” IRC, I think
IRC is such a large part of our community and part of the project that I
don’t really see IRC as kind of a closed communication method. It can be
hard, as you say, for somebody to kind of jump back into the discussion
and figure out, you know, what happened a week ago, if somebody was
talking about it on IRC. But even with that, there are people who keep logs
and who can, you know, say, “This is the actual discussion that
happened.” A lot of times what will happen is, if there is a discussion on
IRC that’s relevant to some specific problem, people will take it and
they’ll copy and paste a log of the discussion and put it into a bug or put it
into a mailing list post, just so that it’s there for somebody who wants to
refer to it in the future.

Vlad24K
Page 6

Albers: How important are comments in the code to smooth development of
Mozilla software?

Vukicevic: It’s an interesting question. Do you mean how important are the comments

that are there now, or how important would they be in theory?

Albers: Well, both.

Vukicevic: Okay. So the comments that are there now, there are some parts of the

code that are well commented and well documented inside the code. There
are other parts that are not all that well documented. I’ve worked kind of
in both. Even the parts that are well documented, I find that very
frequently the comments don’t actually tell me anything related to the
problem that I’m trying to solve because they’re a record of something
that the person who was writing that originally was thinking of in their
head when they wrote that code, which might not be directly related to the
problem that I’m trying to fix in that part of the code. And the more
general comments such as, you know, descriptions of what a function
does, are useful for somebody who’s new into that code and are trying to
figure out how the pieces work together. But it’s not necessarily useful for
somebody who’s trying to solve a problem because, again, it’s way too
general.

 On the flip side, on the code where there are no comments, even just no

descriptive comments, it’s very hard to kind of get into that. We have
some tools that can help out there. We have a tool that can go through and
for any source file, it can tell us who checked in exactly which line and
because of the way we do our check ‘cause that can refer back to the
original bug number when that was first made. So you can go in and see
what problems they were fixing when they did a big chunk of code. And
that, I think, helps more than the actual comments that are in the code. I
think that we could be better about commenting our code base though, and
there are just the general comments. Like I said, are useful for somebody
who’s looking at a new piece of code, but going through in detail, adding
in information there, I don’t think would be very worthwhile.

Ryan: Has anyone sort of become like an advocate for trying to get people to add

more comments or to write more helpful comments?

Vukicevic: I think they have but mostly as documentation, so that it’s kind of more

general information about the more public interfaces, not so much about
the detailed internal stuff. Part of the problem is that as soon as you have
that it becomes a maintenance burden because whenever you work in that
code you have to actually worry about updating not only code but also the
comments. And so it ends up being a lot more work when you’re trying to
fix things there. There’s definitely both good and bad in that, which is

Vlad24K
Page 7

why, like I said, there’s parts of the code that are well documented and
parts that aren’t.

Albers: Do you find that strict ownership of specific areas of the code is enforced?

Vukicevic: It depends on the area of code but, in general, I think it is. The module

peer and module owner structure that we have seems to work fairly well,
and people in general respect it. So some of the modules are looser than
others, but even within those, the actual module owner usually is aware of
what’s going on. So I think it works pretty well.

Albers: How would you describe your programming style?

Vukicevic: What do you mean? That’s kind of a very open-ended question there.

Albers: Yeah. Sort of just, I guess, you know, how do you approach problems?

How do you work through them? You know, have you ever found that
your style has clashed with other people’s when you’re working together
on projects, things like that?

Vukicevic: I see what you mean. I would describe myself as somebody who likes to

fiddle with the code. That is, if I’m trying to solve a problem, I will just
start iterating very quickly, and I’ll try to do something very simple and
figure out why that doesn’t work and figure out what I need to fix. So I
usually go through a lot of iterations as opposed to spending the time up
front to design and analyze a problem in detail. And then, you know, just
do one, maybe two iterations and then come up with the solution.

Sometimes I will force myself to use the design approach, especially if
there’s a large problem involved, it’s very hard to kind of keep everything
in my head early on. But for the smaller problems, I will just start fiddling.
I’ll start putting in debugging code in there to tell me exactly what’s going
on as I run the software. And it does sometimes clash with other
developers, especially if somebody wants to actually sit down and do a
full, you know, some kind of design document or some kind of design
discussion beforehand, and I just want to just sit down and start writing
code. It can be a little bit of a clash there because we want to approach it
very differently, but it usually tends to work out in the end.

Albers: Yeah, how do the—how does that sort of resolve it itself?

Vukicevic: It just resolves itself by compromise, I think. I’m trying to think of the

last time that really happened. Yeah, I can’t think of a specific example
there, but it usually ends up with doing a little bit of design up front,
which, you know, I kind of give in and say, you know, it’s probably a
good thing anyway. And then we just iterate pretty quickly at that point.

Vlad24K
Page 8

One of the things that I would like to see is, the way that we keep our
source code repository, each check in has a lot of weight, I guess, and so
people don’t check in things lightly. I’d like to have the ability to do more
frequent check ins that are just for me or just for my own private branch so
that I can actually have a history of the things that I tried before as
opposed to just only having the history of the one thing that I decided
finally worked.

When Stuart and I were doing the initial part of the graphics work, we
actually took the entire source tree and imported it into a different version
control system where we were able to do these kinds of smaller check ins
without a lot of oversight. But it was just kind of personal check ins for us.
So it made it very easy for us to kind of trade code back and forth through
this but still have a history of what we were working on and what we were
trying. That worked pretty well.

Albers: Have you noticed any tension between those who work on the front end

and those who work on the back end?

Vukicevic: Some, definitely. I think that tension is actually pretty healthy in that the

back end folks tend to be more concerned about the web itself and kind of
the purity of the web and the web standards, whereas the front end folks
tend to be more concerned about the user and giving the user a good UI
experience and also, you know, keeping up with Internet Explorer,
keeping up with Safari, keeping up with Opera as far as flash and features
and whatever goes. And so there’s a lot of time when the front end folks
will tell the back end folks, “Hey, we really need this.” They’ll come back
and say, “No, you can’t have that because you did that you’re going to
break all these things.” And so there’s a good amount of back and forth
that goes on there. But, at the same time, I think both groups are focused
on giving the user a good experience on the web in general. So they work
together as far as page compatibility goes, for example, as a good
example. The back end or front end folks will make sure that things will,
in general, work, just like in IE. So there’s definitely some tension there
but usually not any antagonistic tension.

Albers: So there’s sort of a lot of communication and coordination going on

between the two groups, or is it just enough to get by sort of?

Vukicevic: It depends on what stage of the release things are at. So, for example, right

now we’re working on planning the Gecko 1.9 release, which is going to
be the basis for Firefox 3, and right now there’s very little communication
from the Firefox front end people concerning what they would specifically
need from Gecko 1.9. We’re trying to get them to tell us that because with
Firefox 2 and Firefox 1.5 what happened was very late in the release
cycle, the front end folks said, you know, “Oh, hey, by the way, we also

Vlad24K
Page 9

need this and this and this from Gecko.” And nobody in the Gecko side
was really ready for that, so there was a little bit of scrambling that
happened there. So we’re trying to get them to tell us what they need
specifically early on. But even then, kind of as things finish up with
Firefox 2, as you move into more Firefox 3 work, I think that the level of
communication will increase because there will be a lot more people who
are focused on Firefox 3 then than they are on just Firefox 2 right now.

Albers: To what extent do you think Mozilla has relied on the work of volunteers?

Vukicevic: I think it’s relied quite heavily to get us to this point. Even, I think, right

now all of us who are, even those of us who are employees, we have so
many things that we would like to do that we don’t have time to do,
basically. And that list would just increase dramatically if we didn’t have
the volunteers helping us out as well, to make the product what it is. So I
think, even now, now that there is a corporation, and there are a lot of
people employed to work on it, I think that the employees contribute a lot
to the success of the project.

Albers: Were you ever a volunteer before you were employed?

Vukicevic: Very briefly, I guess. Like I mentioned, I worked on the live bookmarks of

Firefox 1.0 and during that point I was basically a volunteer. That was
kind of my first introduction to the community, to the Mozilla community
that is. So, that was kind of more on a volunteer basis.

Albers: So you were sort of volunteering, you know, with the potential interest of

coming back to work, but what do you think draws other people who
volunteer who don’t, you know, without that sort of prospect for a job--?

Vukicevic: Well, for Firefox in particular, I think the biggest draw is its popularity,

and to know that anybody just with their own desire, can actually
contribute to this project that’s used by, you know, tens, hundreds of
millions of people around the world. And I mean, it’s a pretty interesting
rush, and it’s a pretty good feeling to say, “Hey, I worked on that. I helped
in whatever small part to make this project a success.” And so I think
that—I would like to think at least, that that is kind of an important aspect
of why people volunteer. But looking back at my previous Open Source
experience with the GNOME project, which hasn’t enjoyed as much
success as Firefox has, I think it just gives people something to work on. If
they’re interest in computers, they can work on something that’s more
than just their own personal projects. They can work within a community,
and again, they can point to something and they can say, you know, they
accomplished something. So I guess it comes back to the feeling of
accomplishment there and succeeding in it.

Vlad24K
Page 10

Albers: You know, Firefox has actually been able to attract a large number of
users. It’s sort of in some ways become like the public face of Open
Source, or it’s, you know, when people are learning about Open Source
it’s sort of having come to learn about it in a lot of ways. I mean, what do
you think it is that sets it apart there, you know, and what sets it apart from
being say, Thunderbird or Camino, you know, which also don’t attract a
lot of interest?

Vukicevic: Right. So there’s I think two different questions there. What separates

Firefox and kind of the Mozilla project as a whole from many other Open
Source projects, I think, is a lot of other Open Source projects have a lot
invested in, I guess, the politics of Open Source, in the sense of that they’ll
not only try to draw users to their particular project but they’ll also try to
talk people into going all out Open Source. For example, many of the
other successful Open Source projects, or useful Open Source projects,
like, for example, OpenOffice or AbiWord, they are targeted at Linux.
They are targeted at GNOME, or they are targeted at some other kind of
Open Source operating system or that involves other Open Source
projects. I think the decision for us to be cross platform and to not really
require any kind of dependency on any other Open Source project is
probably what sets us apart. Most of our users are on Windows, and so,
unlike many other Open Source projects, Windows is a high priority for
us. Whereas for the GNOME Desktop, for example, Windows is very low
in priority. They just don’t really care about the Windows users. And I
think that’s a mistake because that’s where the majority of the computer
users are right now. So I think the cross platform aspect, especially the
Windows, it’s probably the most important differentiator there.

 As far as why Firefox is more important than Thunderbird or Camino, I

think in the Thunderbird case in particular, Firefox really began as a blank
slate kind of project. Said, “Let’s build a browser that is useful just for the
user, and it’ll just be a good browser, and that’s it.” Whereas Thunderbird
was basically the Mozilla mail code, just ripped out of Mozilla Suite and
just packaged as its own thing. There wasn’t really very much UI level
work done, that said, you know, “Hey, what do users actually want from a
mail program?” Whereas there was a lot of that that happened with
Firefox. So I think just the design, the UI design never really went into
Thunderbird as much as it did into Firefox. That’s kind of hampered its
popularity.

 And the other reason with Thunderbird is, I think, that Firefox tends to

target consumers a lot more than enterprises. And I think, consumers in
general tend to use webmail, like Hotmail or Gmail a lot these days. So
there just isn’t as much of a population base, or user base rather, that
Thunderbird could take advantage of, that really want kind of a client local
to their machine.

Vlad24K
Page 11

Albers: What do you see Mozilla’s priorities to be?

Vukicevic: Hmm. That’s an interesting question. I guess we have kind of the

catchphrase, “to promote choice and innovation on the web.” And that’s
very broad, but I think that kind of our main priority is to continue to
promote, actually, the innovation on the web. I’d like to say that, you
know, we had probably some part, or definitely some part to play in
Microsoft bringing back the IE team and doing the things that they have
done with IE7. And I think that, overall, is very good for the web. There’s
a lot of interest right now in the web and the web applications, and I think
that we’re kind of pushing that envelope and making people see that it’s
possible to do these things without having to write something for
Windows specifically or for Mac or for Linux or for whatever, that it’s
possible to do these things on the web. So I think that’s kind of one of our
priorities is to continue that, to continue pushing the web platform forward
and to make those things possible.

 Other than that, yeah, I’m not really sure what to tell you other than that,

just kind of continuing to push innovation and look forward.

Albers: Then how do you see that translating as Mozilla moves forward? How do

you see that defining the future of where Mozilla goes as a project, you
know, now that there’s a corporation as well and everything like that. Do
you see that as continuing to drive Mozilla as a whole?

Vukicevic: You mean the innovation piece?

Albers: Yeah.

Vukicevic: I think so, and I think we’ve kind of shown that with the work that we’re

doing for the Firefox 3 release sometime next year. I mean, I hope that
we’ll continue to do it afterwards. We already have some ideas of what we
want to do after that release, and our focus hasn’t been as tight as we’d
like it to have been on either innovation on the web or improving the web
experience. So I think we definitely have a lot to learn about how to
actually focus on those things and how to make sure that our goals and
priorities are in line with that. But I think with the goals of Firefox 3, with
things like web compatibility, making sure that all the IE sites work with
Firefox, and with performance, especially, to make sure that the
experience is not only safe but also fast. I think all those things are very
much in line with innovating and making sure that the web platform, that
the web platform stays viable.

Vlad24K
Page 12

Albers: You mentioned you worked at some other Open Source projects as well.
Would you mind just talking about how they compare, working on
different Open Source projects and working here?

Vukicevic: Before Mozilla, most of my Open Source experience was actually on the

GNOME Desktop project, the Linux Graphical Desktop. And it’s very
much a different project because unlike Mozilla, which is just kind of a
single piece, the entire GNOME Desktop is composed from dozens of
pieces, all of which have their own separate owners, separate maintainers,
separate little development groups, separate release policy, separate check
in policies. So, it was very much kind of this very, very loose balance, at
least when I worked on it, between all the different components.
Nowadays, there’s a couple of pretty major players, like there’s Red Hat
and Novell that hold a pretty tight reign on most of kind of the core pieces,
and most of their people work on those. So I think it’s probably a little bit
different right now, but I don’t really know how to describe it.

The success of Firefox definitely helps in getting people excited to work
on Firefox, and it also helps them, just because we have such a large user
base, it’s a lot harder to introduce a regression or introduce some kind of
bug which you know will affect people. Whereas I don’t think that kind of
urgency was quite the same with the GNOME project. It was a lot easier
for them to try different innovative things that might not have actually
been the best thing for the user base. I think they’re actually getting better
at that now because they realize that they have to kind of only, they have
to have the next release be better than the last, basically. They can’t ever
go backwards or take a step back. So I think that was one important
difference.

 I think that the project dynamics are also very different in that, again, I

think it all comes down to Mozilla being just one big project that
everybody’s involved in as opposed to having these little individual
projects and having everything be tied together. Because even though the
GNOME Desktop is tied to even more than just—the actual GNOME
Desktop pieces are tied to the Linux X server. They’re tied to the Linux
Colonel and all those. So it becomes a pretty big coordination nightmare
to make sure that everything can work together there.

Albers: Taking it up from that, how would you then define a successful Open

Source project?

Vukicevic: I think a successful Open Source project for the user, for an end user

would be something that they can’t really—it will be something for which
Open Source is just a non-issue. They wouldn’t really necessarily even
have to be aware that it is Open Source. It should be indistinguishable
from a big commercial product. A lot of Open Source projects tend to use

Vlad24K
Page 13

the excuse of, “Oh, well, it’s Open Source, it’s okay if it has bug, and you
just go and fix it yourself.” But I don’t really think that’s a valid excuse
and certainly not a valid excuse for us. So I think that will be one way to
define that for the end user.

For the developer, I think a successful Open Source project is one that
they can very quickly contribute to, where it’s very clear where they can
make a difference in that project and how they can become involved. And
also one where the current contributors are open to new developers, that
there aren’t really many artificial barriers to contributing. Nobody will
give you a hard time if you want to help out, basically. And there was,
unfortunately, some of that, and still is some of that in the Linux
community, where newcomers are kind of shunned form the project
because they haven’t been there, you know, when certain decisions were
made five or ten years ago that aren’t even relevant now. But they’re not
one of the old timers, and so they have a hard time kind of breaking in.

Olivia Ryan: How would you describe the barrier to entry to Mozilla projects? Does it

vary among different projects?

Vukicevic: It does vary. I think the biggest barrier to entry among, excuse me, to the

Mozilla project is that most of the current Mozilla contributors expect new
people to be pretty good problem solvers, in that there’s very little time for
kind of hand-holding a new contributor. People will gladly help, and
they’ll be glad to point people in the right direction, but nobody’s usually
willing to sit down and, you know, say this is exactly how you solve this
problem because at that point, you might as well just solve it yourself. So I
think kind of the biggest barrier or at least expectation is that somebody
will be able to figure things out for themselves and be able to ask
intelligent questions along the way to get the help that they need. But
they’re not going to ask for step-by-step instruction on how to do, you
know, how to solve a problem, how to fix whatever bug that they’re
looking at.

Albers: Did you have any experience working on commercial software?

Vukicevic: Very little. I worked at Cisco in, actually, hardware, but even the stuff that

I was working on was mainly internal performance analysis tools. So, very
little. And, again, when I was at Oracle, I was mostly working on Mozilla
pieces. I had some interaction with the more commercial parts of Oracle,
but I never directly worked on those projects.

Albers: Did you find that sort of environment different though than here, just in

general?

Vlad24K
Page 14

Vukicevic: Especially at Oracle, very much so. But, again, I mean, Oracle is a very
big company, so I think a lot of it was just typical big company
environment, lots of management layers, lots of office politics, which just
did not sit well for me, especially coming from an Open Source
background even back then. I did have a number of people that I did talk
to there who worked in non-Open Source divisions who were very
interested about the Open Source process. It was very foreign to them, and
I think that it would be interesting to find out how people who work in
kind of, more commercial companies view Open Source in general.
Because to me, this is kind of the best way to build software, whereas I
could see how somebody either might not understand what we do or how
we do it. So it would be kind of interesting to find that out, but not very
much direct experience myself.

Ryan: So do you find that the pace of production was slower in that commercial

environment?

Vukicevic: Very much so. Yeah. That’s—whenever I interview people here,

especially if they don’t have a lot of Open Source experience, one of the
things that I stress that I like the most is, if I’m solving a problem I can
work on it. I can come up with a solution. I can get that solution checked
in, and it can be in the hands of, you know, our couple of thousand nightly
testers the next day. Whereas to do that same kind of thing in a more
commercial environment would probably be at least a month, if not longer
process to get to any kind of wide release of any kind of fix, any kind of
feature. And I think that’s definitely an advantage we have in that we can
move that fast.

Albers: Do you consider Open Source software projects, the work you do, as a

public service?

Vukicevic: I’m not really sure how to answer that. I really enjoy what I do. So in a

way it is fun for me, I guess, would be the best word. And at the same
time, I’m glad that it is something that is accessible to the public and that
can help out individual users. So I guess, in that way, it is a public service,
but I’m not really doing this—my primary goal for doing this is not as a
public service, I guess.

Albers: Do you think that the popularity of Firefox will—what do you think it’ll

do for the Open Source movement as a whole, the broader Open Source
movement?

Vukicevic: That’s actually hard to say because, like I said, I think that good Open

Source software should be indistinguishable from, or should be even
higher quality than commercial software. So, unless somebody explicitly
knows that something is Open Source, I don’t think that the success of

Vlad24K
Page 15

Firefox will really rub off, I guess, on other Open Source projects. But on
the flip side, I think that other Open Source projects can probably emulate
some of our characteristics to hopefully get that same kind of success and
to be able to bring their product and bring their software out to a wider
audience. And I think that, in general, would definitely help promote Open
Source more.

Albers: And, you know, you were talking about how you find Open Source to be a

very efficient way, means of production, you know, you really like doing
it. Do you think that those sorts of techniques could possibly be applied
outside of software productions, to other areas of production in society?

Vukicevic: Possibly. Kind of the closest cousin to your software will be computer

hardware. And I know that there are a couple of projects where they’re
trying to do various Open Source hardware in a way to design various add
on cards for PCs. I think there’s a project to design an Open Source
graphics card. So instead of buying an nVideo or whatever, you would buy
this pre-made thing. But I think the biggest advantage that the software
has is that the tools that you need to participate are either cheap or free.
You basically just need a computer. Whereas for anything that actually
requires, in anything physical, there’s a large monetary investment
initially there. Now there might be other areas where that also might be
true where you wouldn’t really need any specific tools, but I’m not really
sure how Open Source would apply to some of those areas. For example,
architecture or art or literature or writing, that sort of thing. That I could
maybe see. It might be interesting to have, you know, an Open Source
architectural diagram project, somehow. I’m not really sure how that
would work, but that would be a possibility. But, again, I’m not really sure
how well that would work. It’s worth trying, certainly.

Albers: What do you see the future of Open Source being?

Vukicevic: I don’t really know. A lot of people would like to be able to say that the

future of Open Source is Open Source on every desktop and Linux on
every desktop and Microsoft goes down the tubes. But I don’t think that’s
very realistic. I think that the future of Open Source is probably in
companies like Mozilla, possibly companies like Red Hat, where they can
provide a service or provide a tool that’s developed using Open Source.
They can show that it’s better than the commercial alternative, and they
can—they’ll compete on those merits. Where the fact that it’s Open
Source will just become a non-issue. Until Open Source projects and Open
Source companies can get things to that point, I don’t think we will see
any kind of huge humongous success with Open Source making inroads
against the Microsofts and the IBMs and the other more commercial
vendors out there. So I think that until Open Source just becomes another

Vlad24K
Page 16

way of doing things, as opposed to something that is radically different, I
don’t think we’ll see a huge amount of success there.

