
Olivia Ryan: Okay we are here with Mike Beltzner and it’s June 5th
2006. So Mike when did you first begin using computers?

 Mike Beltzner: Wow, ah -- my first “ah” of the interview, this does
not bode well. The first computer that I ever encountered was a
Hyperian, which my father, who was working for Statistics Canada
at the time brought home from work. It was, what’s the best way to
describe it, like a very wide package, probably about, I’ll use inches
here, probably about four or five inches in height and about a foot
and a half in length and then another six to eight inches in depth.
And it was huge sort of a behemoth thing that had two floppy
drives and a very small monochrome screen. And he brought it
home and said, you know, this is interesting to play around with
this and then he put me down in front of the BASIC programming
language and had me tinker around with that. I think I was about
six or seven years old when that happened. And then shortly after
that our family got a VIC-20 and that was the end for me, I just sort
of started poking and probing around that time.

 OR: Oh great, are you entirely self-taught or did you also have
formal computer training?

 MB: I am mostly self-taught. I did a program at Queens University
in Kingston, Ontario called Cognitive Science, which is a mixture
between computer science and psychology. So I don’t like to say
that I am formally trained in computer science because I haven’t
taken C programming courses like a lot of my colleagues have. I
have been in class myself with a software developer. I understand
software languages, I can read through code, if you give me enough
time I can generally even understand the code I’m reading. But it’s
not my forte. I did do a lot of programming of course in school,
both in high school and in university. I was very good with this
courses so I just tended to pick them.

 OR: Okay, and what sort of first project -- I guess how would you
classify yourself now if not as a programmer what would you say?

 MB: So I call myself a Phenomenonologist, which is a hoity-toity
name because we don’t like to pick titles that box us in. I was hired
to be the User Experience Lead for the Mozilla Corporation, and the
idea behind that is that I try to make sure the user experience that
we put across, not only in our product but also in all of our sort of

user facing aspects, so that’s the websites the marketing campaigns
that we put out, I try to sit on the teams that are crafting all those
messages and make sure that we are putting across a friendly,
positive, and open user experience, the type of thing that we want
our users to feel when they use the products. As a result I interact
with developers an awful lot, I do a lot of software design, whereby
design I mean sketching how the UI should be and maybe talking
about how we can simplify the user facing portions by taking on
more from the implementation side to automate certain tasks for
the user. So at that level I need to understand how computers work,
so that I am not asking impossible things of developers and also
that I am understanding where we can potentially automate tasks.
But I don’t try to delve so deeply into the code that I am writing
those interfaces myself. Part of that is intentional. It’s generally
considered to be good to have a degree of separation between the
implementer and the designer, simply because as a designer then
you don’t get boxed in by the limitations of an implementation, and
you try to work around things. But at the same time, having some
knowledge of what is a limitation of the implementation is very
required so that your developers don’t throttle you when you send
them an e-mail.

 OR: And how do you generally communicate with those who you
work with?

 MB: Depends very much on the project that I am dealing with. So
marketing for example, we do that mostly through e-mail lists right
now. There’s some news groups work, but marketing is an
interesting sort of thing and I will be very interested to hear the
interview you have with Paul Kim. Marketing is hard to do in open
source sort of forum; we try to as much as possible, but I would --
for marketing efforts that are on Spread Firefox, they communicate
through the Spread Firefox message boards. When we are talking
about changes to code, we do that in two places we discuss designs
and implementations and the pros and cons of them in a
newsgroup called mozilla.dev.aps.firefox, and I’ll also file bugs and
comment on bugs. So every morning I wake up, I load my browser, I
load up G-mail, and I take a look at the bug mail that’s come in and
that’s usually about 10 to 40, and so keep track of the design
discussions that are happening there as well.

 OR: Do you ever feel like, maybe I’ll put it this way, are there
certain means of communication that are more effective than
others?

 MB: Certainly, so design is interesting. The easiest – or, I should
say, most productive way that I have ever experienced design is
when you get three or four people together in a room with a white
board and a marker and a problem. And hopefully some data about
what users are expecting and what the tasks are that we are trying
to enable and what the primary use cases are. And you sit there and
you figure out what is the user’s problem, what are we trying to
help them do, how is the best way to help them do that and you
start sketching things on a white board. And back when I worked at
IBM, that was pretty much the way we designed all interfaces. Its
harder to do that in open source sphere, of course, because you
don’t want to limit the involvement of that design discussion to just
four people. And so the forum that I have found now most useful is
to start a design exercise perhaps with two or three people
shooting an idea around like that and then take the design artifacts,
either through digital white board photos or what I tend to do a lot
of is what’s called ASCII Art, which is trying to mock up what the
screen is going to look like using only characters that you can write
into a newsgroup, using a mono space fonts, so a lot of pipes and
dashes and brackets and stuff to make it look like buttons, and
then you put that idea out there for comment and you try to get
people talking about it. Where I’d like to take that process is
making slightly higher fidelity mock-ups, perhaps even interactive
mock-ups using the XUL programming language and using Firefox
as a platform, so that you can quickly show someone, ‘this is a sort
of experience we are looking to portray what do you think of it,’
and just generate comments from that and then rapidly iterate
based on the feedback. The best communication means in a
distributed team like we have at Mozilla, its got to be newsgroups
or e-mail, and the way we do our newsgroups is a newsgroup can
be sent to somebody as an email list, so they then would have their
preferred way of interaction there.

 OR: Is it sometimes difficult for new comers to get involved in a
new project if they not sort of aware of where discussions are
happening?

 MB: Yeah, and that’s probably one of the largest problems we
have in terms of user experience, the user experience for new
people into the project. And we have talked a little bit about that
and how we might benefit from having a buddy system, but the real
weakness we have right now is if you come to Mozilla and you say,
you know, I want to participate, there’s a certain barrier to entry.
Some of that barrier to entry might even be intentional to try to
weed out some noise from the signal that we could get from people
in the world. But some of it is also just a matter of the people who
are working on the project are also, -- they have gotten so
accustom the way we do things that it’s second nature, and so by
the time you become accustomed to it through trial and repetition,
you no longer -- you are so involved in it, you no longer have time
to write down how you got involved in it. So we need to get better
at that. Mozilla.org, I think, needs a bit of a refactoring at this point
in time so that were you to visit that website and say, I want to
participate in Firefox, you can go a project page and find out all the
different ways you could participate and then from there link over
to the various discussion forums. There are a couple of efforts;
there is a discussion currently going on in the newsgroups, I believe
its headed by Ben Goodger, to try and open up that process and
make it a little more accessible for new comers. But it was
something that most people I know who become successful in the
project have gotten used to the way we do things, and the way they
communicate simply by trying and jumping in and observing and
seeing how things happen. Sadly, a lot of that requires that you
learn how to use IRC and jump into IRC and sort of lurk in the
channel and see how things work. That’s certainly the way I learned.

 OR: Yeah. You describe your communications a little bit between
people who work on the front-end and people who work on the
back-end.

 MB: Yeah.

 OR: Are there any kind of natural tentions between those two
groups, in terms of, whatever, philosophy, or --?

 MB: I don’t think so, certainly nowhere near as much as in other
organizations where I have worked where the teams were
extraordinary decamped. And I think a lot of that is because that
there’s such a -- we have a wide group of developers who

participate on the project and certain people live in their little
niches, but a lot of our people who are, what I would call leaders of
development, so the module owners, the people with super review,
tend to sort of strattle areas, right. So, let’s use one of my favorite
people Vladimir Vukicevic as an example. So he’s one of our core
graphics hackers right now who is working on the new Cairo back-
end graphics platform for Windows, Linux, and Mac, with Stuart
Parmenter and some other really good people who are down in the
dredges. But both Stuart and Vlad will also throw in a comment on
the front-end bugs and they both got very strong design senses, so
we don’t tend to have that decoupling you have between sort of the
front-end camp and the back-end camp, and we certainly don’t
interact in the same way as lot of other organizations, where the
back-end camp sort of writes to some sort of contract named by a
product manger or the front-end person nor vice-versa, so its not a
matter of them developing an isolation, its all very in plain view of
each other. And I think that ends up being a bit of a strength for us
because the two camps are bit more in sync. And nobody is sort of
considering, you know, that’s back-end responsibility or that’s
front-end responsibility, it is a whole project sort of thing. That
said, the discussion for those two sort of aspects of the project is
done completly in isolation of each other, and part of that is the
current branch management that we’re on. So right now Firefox 2 is
being developed on what’s known as a stable branch, so specifically
it’s Mozilla 1.8.0 branch, no wait, that’s wrong, 1.8.1 branch. And
Firefox 1.9, which is the new sort of larger back-end development,
is being targeted for Firefox 3 or Gecko 1.9 is being targeted for
Firefox 3. And so as a result the two camps haven’t had a lot of
reason to interact now, but we are already starting to look at
planning Firefox 3, and those meetings will be Gecko 1.9/Firefox 3
meetings, so it will all happen together. So I haven’t really
experienced that. It’s a long winded answer.

 OR: Yeah, no, that’s great. Would you say that strict ownership of
specific areas of the code are enforced, is enforced?

 MB: Yeah. Module ownership -- we are getting into the area
where I should mention that I have only been working deeply on the
project now for a little under a year and I am still very much
learning sort of pros and cons of module ownership the Mozilla
way. What I would say is that from what I’ve experienced, module
ownership is very much in place, fights about it don’t come up all

that often. Specifically with Firefox 2 the way we have been doing
and managing all of our code to this point anyway, its going to start
a little more restricted now that we are approaching beta one, but
the way we have been doing everything is that check-in review was
simply approval by module owner. So the module owners really did
have the little fiefdoms and the process of benevolent dictatorship
over the module seems to have been working well. What it really
counts on is the module owners being reasonable people who are
willing to have their decisions questioned and at least listen to
arguments about their decisions. And to the most part I have seen
that happening. And disagreements are going to happen and when
that happens you trust the module owner and you trust the process
to at least to arrive at the right decision. And if it doesn’t we can fix
it a little ways down the line. I think a guiding principle that I was
introduced to early on was from Mike Shaver who told me that
perfect is the enemy of good. And I see that a lot in our project; we
are not striving to be perfect with every release, we’re striving to be
as perfect as is pragmatically possible. There are certain things
where you do strive for perfection, but at a certain point that’s just
going to bite you, because we would be spending too much time
debating little semantics when really the best way to figure
something out is to get the product out there and see how people
are going to use it.

 OR: To what extent has Mozilla relied on the work of volunteers,
and do you, if you know, if that reliance is sort of changed over
time?

 MB: I would say to a large extent and I would say the reliance has
changed overtime but probably not the way a lot of people expect
especially since the organization corporation split. I would say that
now more than ever, we rely on the work of volunteers. We rely on it
in everything, perhaps most importantly, volunteers in terms of
spreading the word of it, Firefox. I think that the efforts of our,
what I’ll call marketing volunteers, go largely unsung. The efforts of
our localization teams who are largely volunteer also go largely
unsung. We have greater penetration in Europe than we do in North
America, and that would not be possible without our localization
teams. I think our QA volunteers and just the people who hang out
in IRC and help diagnose problems and triage bugs, that is a huge,
huge HR investment which we sort of get for free because people
want to be involved in the project. And these are things which

anybody really can do, you don’t need to have a deep
understanding of computers to be able to sit there and help
somebody through a problem and if you can't solve that then
realize, maybe this is a problem that actually exists in the product
so we need to file a bug on it. Or to just sit there and look at bug
reports and try to reproduce what somebody had said and say
whether or not you see it as well.

 Chris Cooper and the QA team have been working – and Zach
Brown as well -- have been working on this project called Litmus,
which is a way of allowing anybody who is interested to go to a
website, and what they’ll get is a series of steps, for what's called
the Smoke Test, which is like a, a Smoke Test is a set of predictable
user actions which would result in a predictable system reaction.
So, for example, hitting Ctrl T, and getting a new tab popping up.
And whenever we spin out a new build, when somebody’s check-in
may have broken that behavior, what we need is to make sure that
these basic tasks still work from release to release or from nightly
to nightly. So, if I was somebody who knows very little about
computers but wants to get involved in this cool new Firefox
project, I can go to this website, get that Smoke Test, follow the
steps and say, yep that worked or no that didn’t work. And that in
itself is extraordinarily helpful to us because it means that we can
take somebody who is perhaps more knowledgeable of the code
and put them on something which requires somebody use more
knowledgeable of the code.

 In terms of design, which is something I’m very interested in, I
have been -- and here’s where I get to smack down my own people
-- I’ve been very disappointed in the support we have gotten from
design volunteers. People like John Hicks, Kevin Gerich, Steven
Garrity, the silver orange team, these people have sort of jumped
into the breach for Firefox 1.0, and built a Visual Identity for
Firefox, and Jon Hicks obviously did the fantastic logo for Firefox.
And these pieces of work were largely spurn by volunteer effort, but
since then the design community, the usability communities haven’t
really been engaging in a direct fashion with our community on
making our product better. And that’s a little bit of disappointment;
I actually see it as a bit of a personal failure because I haven’t been
able to bring them into that. And I have tried a couple of different
things, and I don’t know if it’s a, if it’s a tools problem, if it’s a
matter that open source is seen as kind of the simply geek, and its

not plastic and shiny and sexy, but it’s something I would like to
get a little better at, because I think that as we grow we need to
able to work asymmetrically. We need to be able to do more with
less in order to sort of compete in this market where there is some
very significant competitors with very large budgets and without the
volunteer efforts, I think we are pretty dead in the water.

 OR: And so why do you think people volunteer?

 MB: I think people volunteer because they like to be a part of
something. I mean, if you go into Firefox right now and type about
colon credits, you’ll see this huge list of names, and that sort of
gives people a big community feeling. It let’s people realize, you
know, I am in control not only of my computer in terms of I can
chose what to click on, but I can also be involved in the creation of
the software this computer runs on. I think the idea of a bunch of
people working together to build something that’s better for that
bunch of people resonates in a lot of cases. And I don’t even know
if that’s a non-profit thing, people get experience out of it, people
get knowledge and understanding out of it, I know that what first
attrated me to the Mozilla project was this idea that I can finally
understand how software development works, and I could
understand how large scale group collaboration could work, and all
that’s very exciting. There’s a large aspect of our community as well
which is just purely social, and you get all these people sort of
working together on this project, you are going to get jokes, you’re
going to paling around and laughing around, and there is a fairly
large sense of what Cory Doctorow would call Whuffie coming out
of that, right, you get some social capital. And I think that’s – it’s
underestimated what that’s worth. And I think that our competitors
are learning. So just the other day I saw a blog post from the head
of the Microsoft Excel team, and what they were talking about was
the Excel 12 or Office 2007 preview and how Excel’s got a whole
bunch of templates for charts, and everybody who uses Microsoft
Office knows they come with templates and you got like six or
seven and it’s the six or seven that the Microsoft design team have
decided most represent business. And what had happened was
there were a lot of people who were saying that the Excel templates
weren’t really that professional looking, and the colors were garrish
and whatever. And so he has put (inaudible), and said, if you think
that they’re bad, we are willing to take submissions. And I think
that’s very powerful because all of a sudden it shows we are

listening to our users, we want you to be part of the process, and
we want you to feel a little bit of ownership of the product. So I
think, all of those things are being the reasons why people
participate.

 OR: You mentioned, you touched on marketing…

 MB: Hmm.

 OR: And people volunteering to help with those marketing
efforts. Do you sort of see, think that professional marketers are
necessary to the process or do you sort of think that developers and
designers can sort of start off something like Spread Firefox or
whatever and the community can just sort of run with it?

 MB: I think having professionals in place to guide the efforts of
the community is always extraordinarily valuable and the same
reason why -- and I’m in Canada so I’m going to use a hockey
metaphor -- the same reason why the teams that generally win the
Stanley Cup are teams where you got somebody who has been into
the playoffs before. And newspapers who always talk about it, you
know, the benefit that team gets from having a veteran, and it’s just
understanding what’s going to happen and being able to predict
how people are going to interpret something. So, if I were a
volunteer marketer, I might think that a slogan I have for Firefox is
fantastic without realizing with the sort of professional expertise
that an experienced professional gets, how that might be
misinterpreted, how legal implications apply, and even just how to
sort of shine and polish rougher ideas. And I think that also
encourages a learning cycle which then helps those people who
were volunteers get the professional experience they are looking
for. So, I don’t think that what we are advocating is a destruction of
all professional realm, I think what we are advocating is a more
colleagial and collaborative atmosphere where professionals work
with the volunteers to help share their experiences and grow that
way. I am a big believer in the co-op sort of model of education
where people learn most by doing and observing people who do,
rather than by sitting and reading books. I think reading books is
good for foundational knowledge. I think that, once you get in it,
foundational knowledge is important to have but applied knowledge
and experience just trumps it every time. In the specific terms of
marketing, I think there’s also a certain industry requirement that

the recipients of traditional marketing avenues require. So no one’s
going to go to a press conference if that press conference isn’t
done in a way that press conferences are noramlly done. Once you
get the credibility of having run a couple of press conferences one
way, then you can start branching out and experimenting. But
there’s a certain sort of low bar that you need to gain credibility,
and I think that sadly or no -- I’ll let that be something that you
and the listeners can decide -- but that’s something which requires
professional sort of entry.

 OR: And why, if you know, or if you have sort of an opinion…

 MB: I have an opinion on everything.

 OR: Why then -- the marketing efforts that have been sort of
open sourced, if you will, have focused mainly on Firefox, and to a
lesser extent Thunderbird, and have not really focused on other
Mozilla products?

 MB: I think it’s a matter, that’s interesting, I actually, I’d just ask
which other Mozilla products you were thinking of?

 OR: I guess any of them, Sunbird, Camino...

 MB: Sunbird, Camino...

 OR: Yeah, Minimo…anything.

 MB: Seamonkey, sure. I think a certain part of it is to not
bifurcate the message to make sure that we’re -- and this is where I
am going to start postulating from user experience perspective --
it’s a lot easier to tell somebody three things than seven things. It’s
a lot easier to point somebody to this is the good answer for web
browsing. I think that we are careful not to slam self-competitive
products, is that even a term? Things like Camino, and things like
SeaMonkey. I actually have all the browsers installed in my system, I
use them for different purposes. Some of them valued (inaudible) -
- I think, what we try to do is push a product message because
from a purely receiver’s point of view what I care about when
somebody comes to me with a marketing message is what’s it’s
going to do for me, and it’s a lot easier to say well Firefox will make
your browsing life better for these ten reasons. And then there is a

secondary thing we push the and it’s open source, and here’s all the
benefits of it being open source, and the community aspect of it,
and how you can even get involved and control it’s destiny. And in
that second message we sort of give benefit to the other products.

 Sunbird and Minimo are interesting examples, I think those are
products which we would should be talking about more, not
necessarily to the mass consumer public but to the developer public
because I think those are two very exciting projects which we need
a bit more focus on. Mobile browsing, everybody tells me, is all the
rage. I have been trying to mobile browse for about three years now
on a variety of different cell phones, and I’ve found it nothing but a
sea of tears and disappointment. I now have a Blackberry, which
doesn’t have the greatest browser in the world, but the way that I
end up mobile web browsing the most is I hop on an IM client or
IRC through my Blackberry and ask somebody a question, because
that’s just way quicker than any other sort of mobile browsing
experience that I’ve been able to find. But Minimo is very exciting
and I know Doug Turner is doing some great stuff with it. And
getting more people focusing on what mobile browsing is actually
going to be and not letting the cell phone providers and the data
carriers and the wireless carriers sort of dictate what mobile
browsing is going to be, I think is something very important and we
need more focus on.

 Similarly with Sunbird, I think calendaring is something which is
going to have a lot of tie-ins both to mobile browsing and to
personal information management and how sort of ubiquitous
computing ends up, getting implemented. And there again, there is
a fairly open standard called iCal but that standard has become
extraordinarily fractured and it seems that everybody says they are
iCal compliant, and yet if you need to get two iCal compliant
vendors, for example, Sunbird and Apple iCal, trying to talk to each
other, there’s problems. And its because each is supporting a
portion of the standard. So again there, having more people look at
that problem and especially more industry people like Lotus, people
-- I know that Sun is doing a lot of work right now with Calendar,
and Oracle has been as well. But I think vendors like IBM need to get
in there as well and Apple and really work out how can we make it
so that these products -- there’s never going to be a one winner for
Calendar -- but how we can make it so that they can add value to
each other by being interoperable at which point the differentiation

becomes which is providing the best user experience for a task. Let
the data be free, (inaudible) and just focus on how you are actually
going to add value to the user instead of by locking them in. So I
think we should be pushing those messages a little more, but
again, not to the consumer audience, to the audience who wants to
help and has the skill to help control the destiny of that.

 OR: So for the consumer audience, you think maybe its just too
much noise?

 MB: I think, right now, the products aren’t ready, is the basic and
sad truth. And I hope neither Dan Mosedale nor Doug Turner will
hunt me down and kill me for saying that. But they are both, I
mean, they’re also both dot releases right now, neither of them hit
a 1.0. Calendar is raising towards the 1.0, and it’s the one that I
have been interacting with the most aside from Firefox right now
and I think they got some really exciting stuff going on there. So, if
you haven’t interviewed Dan Mosedale or listened to the interview
yet, you should, he is a very interesting guy.

 OR: Okay, thanks. So, I know that you’ve only been with Mozilla
for roughly a year or so but you may have some insight into this. I
understand during the early development of Firefox, the CVS access
was restricted to sort of a limited to group of people and….

 MB: That’s even true now.

 OR: It is, yeah, so was going to have you discuss how the access
has sort of shifed or why that was and why you think that was
beneficial to the production of Firefox.

 MB: There’s a discussion going on in Mozilla.dev.planning right
now started by Mike Connor about changing the way CVS access
works. And again, so here we are stepping up my expertise a little
bit, but what I will do is a sort of give you my observations, which
is, the more people that have CVS access means the more sort of
higher level fights you could have. CVS access almost represents
the last control, it is the gate to actually making a change to the
code and the gatekeepers historically have been the people who
then control what’s in the code. As the project grows, the benefit of
them being a gatekeeper turns into a detriment because all of a
sudden they also become overburdened and they become a

bottleneck in the process. And so, from that side there’s an
argument to increase the number of people who have CVS access.
From the downside, one thing that’s really important to our process
is being able to have stable builds at the end of the day. So, we
need to know if we give you the CVS access and you, what’s called
break the tree, and as a result the builds stop working, we need to
know that you can then fix the problem even if wasn’t your patch.
And even if you check in someone else’s bad code, you need to
know how to fix it so that as soon as possible we are not stopping
all of our internal testing, we are not stopping the work of other
developers who then have to wait for the tree to be fixed before
they can make sure their code won’t break the tree. And just for
that reason I think limiting CVS access to a trusted group is very
important, and also making sure we don’t get, you know, too many
commits that clobber on top of each other.

 And in terms of how it restricts the variety or creativeness of the
people working on the code, I have very rarely seen somebody
refuse CVS commit as the way of stomping on a design decision or
stomping on a change to a code. It generally gets stomped on way
earlier than that. And generally by the time it gets to CVS commit,
the module owner, or whomever has actually already agreed to do
something. From what I understand early on in the Firefox
development process CVS commit was very limited simply because
they wanted to move as quickly as possible, and there was a core
group of them, and they didn’t want to have to have check-ins that
they didn’t understand, and they were all co-located, they were sort
of -- It was almost like you had five people in the room, and at that
point CVS commit is just limited to those five people so that you
always know what’s going on, and you don’t want to give it
somebody outside the room because then you need to understand
where the check-ins coming from. That’s really no longer the case
with Firefox so that model has changed a little bit, and that’s
probably also why. Maybe, I guess.

 OR: And does this differ, if you know, from any other Mozilla
products? Are they run sort of similarly?

 MB: Yeah there I really I can’t – I don’t know.

 OR: What do you think Mozilla maybe in particular Firefox, or, I
am sorry -- Why do you think they are unable to attract so many
users, in particular Firefox?

 MB: Selfishly, I will say that it’s because of the area which I am
now responsible for, which is that Firefox simply did things better
than the competitors where things is defined as the set of things
that the majority of people want to do when they’re browsing. I
think even hard core browsers, the type of people who ask for what
I’d classify as a hard core features, so the ability to turn on or off
the rendering of a certain tag in the rendering engine, liked Firefox
for the fact that they could easily modify it to do exactly what they
wanted. But in the majority of cases Firefox adheres to the principle
of get out of my way and let me browse. And it focuses on the
content. You see this a lot in Safari as well. Safari has the least
amount of what’s called chrome or user-interface layer that belongs
to the browser, and it really tries to let the user focus on the web,
which is what they are trying to get to.

 I think there’s a certain amount of people who are attracted just
to the idea of it being an alternative to Microsoft. There is a security
model argument there which a lot of people think was one of the
reasons why we became successful, and it may well be; I don’t think
its necessary as compelling an argument. I honestly don’t think the
majority of users are aware or as concerned with fishing and
spyware, they find these things annoying but where that actually
manifests itself is that Firefox had fewer popups and Firefox said
eventually your system will work better, and people started noticing
those correlations, people started noticing that it was more
convenient in a lot of ways than other browsers. We try to focus
really on the simplicity of the install experience, we try to focus on
the simplicity of managing your information. And then another
reason why I think we attract a lot of users was that we got a very
rabid fan base and we let the marketing be up to the community,
and they just really pushed the message out there and grew our
audience that way.

 OR: So I am shifting gears slightly, how would you maybe list
Mozilla priorities?

 MB: Ah, the Mozilla priority question. You must get such fun
answers to this one. Shifting is how I’d rate Mozilla’s priorities. Our

organizational mission is to promote choice and innovation on the
Internet, and I think that is still our priority. And the way we express
that priority is we try to figure out how do feel with our current
resources and our current position and our current strengths and
weaknesses, we can best accomplish that task. And adding thrust to
the Firefox movement seems to still be the best way to do that. We
have a certain -- depending on stats – anywhere between 10 and
15 percent of North American browsers working on Firefox. That’s a
dangerous number. It’s enough to get comfortable with, its enough
to say yeah we are now a competitor. Its also enough that it can go
away fairly quickly. And you can look at it as, you know, yay that’s
10 percent Microsoft and other companies don’t have, or you could
look at it as its only 10 percent they need to get back. So I think we
need to shore that number up and I think we need to make Firefox
even better and make it a more convincing value proposition for
users and I think that gets us a lot of things towards our original
mission goal in that we make sure that there is no one controlling
stake for web browsing. We make sure that there is a choice that
users have and that there is an active sort of community and
movement of innovation and development about web technologies.
And that it’s always moving forward, and its never a matter of well,
we’ve gotten all of the markets so we can ease off on that product
for a while until we go somewhere else. So I think for that reason
our number one priority overwhelmingly is still Firefox.

 I think that we need to be very strategic about the way we invest
money in some projects, in terms of what value -- not we as a
corporation can get out in terms of profits and dollar and cents --
but what sort of value our parent foundation can get out of us
adding thrust to the other projects. And so far I haven’t seen the
value for investment proposition coming out of any of the other
ones that are sort of staying around at the lower levels. We are
seeing more and more email users use web based platform for e-
mail, which is sad because I like Thunderbird but it means that
Thunderbird probably needs to recreate itself a little bit to make
sure its still relevant and important for users. And now Scott
McGregor is going to come headhunting after me, but that’s okay.
Similarly with Calendar, I think the Calendar is very interesting to
subset of users but its not global enough yet, I don’t think that
there is a way that we can change the computing world through
Calendar the way that it currently exists. I think there’s some really
good potential in there. Similarly with the Minimo. And so I believe

those are the projects which we are investing in, but until we see
how they are going to change the Internet and that world, the
primary focus really still needs to stay Firefox. Because there’s a lot
more things we can do there. We are not bounded by opportunity or
number of things we want to do, we’re bounded simply by time and
bandwith to do them all.

 MB: Okay, in talking about sort of open source generally and
broadly, how might you define a successful open source project?

 OR: One that gets used. And not even necessarily used by end
users, but even if an open source project gets reused in other bits
of code, I think that’s successful. One that is active and maintained,
I think shows a sign of success. So there’s a lot of open source
projects out there that are sort of stillborn. There’s a lot of other
ones that are very, very active, and can be reused, and can end up
making it easier for – and here’s where I’ll start sounding like Larry
Lessig -- easier for other people looking to do similar things to
build upon the creativity of others. We all stand on the shoulders of
giants. I mean I’m talking to you using a microphone that was
invented based on design, based on design, based on design you
know back in time. And I think we are all better for the ability to
create off of the creation of others, so I think that the basic metric
of success for an open source project is that it gets reused. Some of
them aren’t going to be sexy, right. I mean Firefox is a little sexy
and it’s a web browser that brings you know the cool new web
apps, it’s hip, it’s web 2.0. Some of the open source projects that I
think are most important are really foundational, the open source
bits on which the majority of the Internet runs, the Apache web
server, Linux itself. I think those projects are more successful than
people give them credit for. And I think Linux has a lot of ego
problems because it hasn’t succeeded on the desktop but I think
that what Linux needs to continue to be proud of is that they run an
awful lot of the Internet. And there is a huge value proposition in
terms of making sure that they can run Enterprise level Internet,
and Enterprise services and servers, and that frees other people up
to be more creative and eventually to create a desktop on Linux that
will have resonance with users, so I would even classify that as a
success. I am a pretty generous person though, so I think the
harder question is, what classifies an unsuccessful opens source
project. And that would be one where there wasn’t wide need for
the aspect and so it isn’t really well used, and so you can spend a

lot of time investing in open source mechanisms when really a sort
of smaller private proprietary thing were necessary. That said, once
its done, you can release the source to the open, so I guess it also
depends on how you define an open project, but at the core I would
say that any open source project that ends up getting reused is
successful, either by users or other developers.

 OR: Have you worked on any commercial software projects?

 MB: Yep I used to – before I came to Mozilla, I worked for IBM
Canada, and I started working on VisualAge for Java 3.5 point
something or other Enterprise Java Toolkit and I was eventually
shifted to doing user interface evaluation and design work on what
became Eclipse 1.0. So that was a sort of different time for IBM
where they went from a commercial package to an open source
package. And I think Eclipse has been very successful. I’d also like
to amend my previous answer to say, an open source project is
successful once it starts moving in directions that its founders
couldn’t predict. And so Eclipse has done that, right so, I don’t
think IBM ever would have predicted that BEA would become a
member of the Eclipse board, or even that all these other vendors
would sort of jump on board of Eclipse and say, you know what, a
sort of open source IDE for developers that allows them to just get
used to a development environment then plug in the tools they
need to develop their software, it’s a really good idea. And Eclipse
has started to move in lots of ways that I don’t think IBM ever
predicted that it would move but that is a really good marker of
success of an open source project because it means that all of a
sudden it is growing organically instead of just being a mechanism
through which you can get people to contribute to your code. How
socialist of me.

 Commercial packages, so after I worked on Eclipse I started
working on WebSphere Integration Developer -- currently available
in 6.0, contact your IBM salesman now -- and it was based on an
open source product, right so it was an Eclipse based tool, but it
itself was proprietary and closed, and so have worked on sort of
more traditional software development models. And I am not sure
that they necessarily moved any faster than open source
mechanisms, which is often a critic of open source, that it doesn’t
move fast enough. And from what I’ve seen, open source moves at
least as fast as the projects that I had been working on that were

closed source before. There’s perhaps more chaos around the
control of the product, and I think due to the way -- and my
experience again is with enterprise software so due to the way
certain types of software like enterprise software marketed -- that
degree of control is actually the bigger blocker, right. So, when you
are selling enterprise software there is a list of things which you
need to have in the box, as decided by a CIO of some company
whether or not they need it that seems to actually be a totally
different distinction, just a matter of they want these check boxes
to be filled. And, in a lot of cases, the people working on the
software, don’t understand why a lot of the check boxes need to be
filled, don’t understand how it is useful to users, they just know
that they need to do it in order to sell the software. You don’t get as
much of that in open source. And when you do get that in open
source, those are the hardest things to get it done, because nobody
really wants to work on them, and that’s where…

 OR: And where are the instances where that does happen in open
source?

 MB: In open source, there’s certain instances around, an example
of something which -- I shouldn’t say nobody, because we’ve got
some really good people working on it, but accessibility, is a great
example of the type of work that a lot of developers just don’t want
to do. And it’s not a matter of them being horribly bigoted or mean
people, it’s a matter of them not finding that work personally
exciting. But then you get people like Mark Pilgrim and Aaron
Leventhal for whom that sort of work is extraordinarily exciting, and
they both happen to work for IBM and IBM happens to pay them to
work on our code base, but they have sort of taken on that little
direction and they whip people into making sure that our code is
accessible. And without them we would not have anywhere near the
value proposition we do, because our code would not be accessible
and US government, for example, wouldn’t be able to use our code.
So, that is an example of a certain thing which we have to have but,
we really need to have dedicated people towards doing it, and I
could see that without the contributions of Mark Pilgrim and Aaron
Leventhal that would be a harder sell to get somebody involved and
working on it.

 OR: So in what other ways would you say, either in management
or kind of in day-to-day activities, does the proprietary software
differ from open source?

 MB: There’s way more management in proprietary software and
that has its benefits and its detrements. So with Firefox 2, we tried
to start reinjecting some classical product management into the
process and we hit a whole brick wall of resistance. A great example
was at one point we named something the product requirements
document. We tried -- we didn’t use a typical PRD template for it --
we tried to make it more like the Mozilla way of doing things. But
listing our requirements and prioritizing them and then trying to
explain where these priorities came from and have people help us
set those priorities. We weren’t doing this in a closed off fashion,
we were doing it within the eyes of the community, but people
really rejected the name product requirements documents. They
just they wanted it to be called, just here are the requirements, here
are priorities, de-emphasize the product aspect of it. Similarly,
within each sort of focal area, we tried to sort of attach a, here is a
development lead, and here is a product lead who will help you get
the research and data you need to make the right development
decisions, and that came with a lot of rejection and anger as well.
Going back to the, we have module owners why do we need product
mangers as well? And I think there’s some benefits that product
management brings into things. So product management can take a
lot of lifting off a developer and let a developer focus on what they
enjoy and what their preferences are for working while taking on
product management tasks which are equally important, such as
doing competitive analysis, going out, and finding out legal
requirements, talking with partners, finding out where we can
interact and what sort of concerns we should be taking as
requirements that are non-technical requirements. But figuring out
how to make that work while not slowing up our developers and
while not blocking on that, is something which we continue to try
and evolve and which we really need to figure out. Another, and it’s
a major difference between proprietary software and open source
software. In proprietary software…

 MB: Alright, so small interuption there, we were talking about the
differences between proprietary and open source models. So what I
was saying was the one of the things that a proprietary model is
you have a manager who tells you as a developer what to do. And

again benefits and advantages: benefits is, you know what you are
responsible for, you know what your deadlines are, you know what
you are supposed to do. Disadvantages are that you might not be
personally passionate about doing that. The open source model is
far more self-directed, where you understand there are
requirements and you sign up for doing one of those things, and
then you take on that responsibility. There is a certain degree of
personal choice out of there, and there is a certain degree of
casting about, wondering well who am I, what am I responsible for,
what’s my role in the organization; I have been guilty of belly
aching about that more than once. But one of the things that is nice
is that once you’ve signed up for something, you get this sort of
feeling of personal responsibility for it. And as a result I think that
people end up being a lot more passionate about what it is they are
doing then just simply, I have had these ten bugs assigned to me
and so I must do them, for this is how I earn my paycheck. I don’t
know many people who work for Mozilla, or who work for a
company that lets them work for Mozilla, who define themselves by
this is what I do to earn a paycheck. A lot of us tend to work on
Mozilla because we want to work on Mozilla, and it’s kind of bonus
that we are getting paid for it. I know that I was describing to a
friend of mine that one of the differences for me between working
on Mozilla and working on IBM is that IBM was a job and I was very
passionate about my job, I really enjoyed my job, and I enjoyed the
people I worked with, but when I came home I wasn’t thinking
about what I was doing in my job. Whereas now in Mozilla when I’m
not doing anything else I’m generally doing stuff for Mozilla. And
it’s not because I am overworked or because I have too many -- or
because I feel like I’m always behind, it’s because I always want to
make sure that I’m moving that project forward.

 OR: Do you consider open source software projects – and Mozilla
since that’s what you work on – as a public service? Have you ever
thought about it that way?

 MB: I consider any software development a public service. And
ours has to, ours has the benefit of being free. I don’t think that we
are a service for which the public should be charged, necessarily. I
don’t see this as a service which the public has to have either, right,
so the public never asked for us to give him the service. We have
decided to make this service as public as possible because we see
benefits out of that, so it’s not a public service like I’d see sewage

or roads as a public service. It’s a public service in that we really,
that we are serving the public and we feel like we are doing this for
the greater good of the Internet public. Trying to wrap this around a
pithy thought but I don’t think I considered it before, no. There is
obviously a public benefit and a public good to open source
projects but I think it would be dangerous for open source to start
seeing itself as a public service. Simply because I think that they
might feel like that without us, there is no other way of doing
things. And what really open source is trying to do is demonstrate
that without commercial software services, there is another way of
doing things. So, the other model is well-established and has
created fortunes and has also created a lot of progress, what we are
trying to prove is that another model can work just as well.

 OR: And what do you think, the success of Firefox might do for
sort of open source as a whole?

 MB: To be seen, I think that for open source as a whole, what it
will do is it will prove that there are ways of mixing the models
more successfully. So I think up until Firefox the model had been --
and I would even say up until arguably Mozilla 1.0, I think we
shouldn’t differentiate Mozilla 1.0 with Firefox in terms of the
impact on open source projects. I think that Firefox ended up
getting more users because it paid attention to user requirements a
bit more than Mozilla, but I think that Mozilla was still a very
different way of doing an open source project, and that it was a
user-facing project, whereas most open source project have not
been, historically. And I think that Mozilla really sort of took into
account the idea of making itself relevant to the user, instead of
relevant to a specific class of users, they tried to be relevant to the
global user and they just, I think that with Mozilla 1.0, they just
missed the market a little and then they refined it for Firefox. I
think what it’s going to prove is that mixing an open source model
with a consumer application model can end up being very
successful, and figuring out how to make -- how to return
investment back into the community through revenue share or
other mechanisms is a solvable problem. Getting other companies
to participate and proving the value to those other companies and
having them participate is a solved problem, now even. And I think
that will have a great effect on the open source community, and I
think you’ve seen that as well. I think that, you wouldn’t see as

much industrial focus on open source if it weren’t for the success of
Mozilla 1.0, of projects like Apache, or projects even like Linux.

 OR: And do you sort of think that open source techniques can be
applied to other means of production like you mentioned
marketing, do you see examples of open source methods in other
areas in society, and do you – if you do, do you think they are all
kind of part of the same movement that’s happening right now?

 MB: I think so, yeah, so I’m going to even step out of software
altogether and talk with public policy. A friend of mine, Dave Eaves
who is a bit of a policy wonk, he’s a mediator and negotiator and
potentially a future Canadian Prime Minister, if he has his way. He
has become very excited about open source since I started telling
him about what I was doing. And he wants to see policy documents
written in an open source sort of fashion. And again, I think that a
lot of people mistake open source with everybody has an equal
voice, and that’s not what it means. What open source means is you
are listening to the input of others and you are not making a
presumption that the only people who have valuable input are the
people who work for you or the people you work with, but rather
that a very powerful and good opinion can come out of the
strangest of places, and the only way that you can make sure you
are actually getting access to all of that information and knowledge
is by opening up the process. And that the benefits you have from
doing things in a closed environment are outweighed by the
benefits you have of just some random guy who is interested in
what you are interested in and happens to be killer smart and just
happens to be in different place than you, can give you his
knowledge and you can benefit from that knowledge.

 Do I see this as sort of a shifting attitude in all sorts of industry?
Maybe. I think certain -- I think the sort of variable in that equation
that needs to be controlled is, to what degree of control do you --
what degree of control do you hand over to the open source
audience, where do you put your gatekeepers, and how do you
respond to that audience to whom you say you are listening. I think
the whole idea of participatory design is becoming bigger and
bigger and you’re seeing that more in marketing, you’re seeing
more where people realize that the best way to market a product is
not to just tell somebody this is why Tim Horton’s coffee is great,
but rather to make Tim Horton’s part of their day and make them

part of Tim Horton’s and have Tim Horton’s listen to what they
want, and respond to those user needs. And I think that where
technology is landing us is a point where the exchange of
information is now so cheap and so facile that you can start doing
these things more easily and you can as, again, as Tim Horton, or
as a politician you can put up, you know, here is the bill, or here’s
the new product that I am looking to give out, what do you guys
think of it. And you can get people telling you their opinion before
they even try it. And how much you listen to that is obviously your
concern, but that sort of involvement by the marketplace and the
development of things which are eventually destined for them, is
just an obvious benefit to me, and all that’s different now is that we
are coming up with ways of making it happen.

 OR: So, last question, and is this extremely broad…

 MB: Because I have been answering so narrowly to date.

 OR: What do you think is the future of Open Source?

 MB: Flying cars…ah…future of open source, boy, I don’t know.
It’s really, really hard for me to predict that. Only because to me it’s
so new and wowy and amazing. I will be very interested to hear the
opinions of a lot of my colleagues on this. I think the future of open
source is that we are going to see more and more requirements for
platforms to end up being open “source-ish”. And we’re going to
see – and the requirements are not going to come from
government, they aren’t going to come from any sort of regulator,
it’s going to come from the marketplace. Using an example that I
just read in the book, which I would quote if I remember the title, so
I’m just going to state this now, this is not my terminology or idea,
creative commons by attribution maybe, who knows. It used to be
that you could do Trojan horse platform plays where you, you know,
you give somebody what seems like a great gift and it turns out that
you have a whole bunch of guise inside which make sure that you
lock somebody into their platform.

 But nowadays people have seen that so much, and they are so
wary of it, and they are so wary of creating another IBM circa 1980
or Microsoft circa 1990 – and I think Microsoft is changing, which is
why I said Microsoft circa 1990. But they are so worried of creating
these sort of proprietary platforms that the market is

extraordinarily wary of it. And I saw this when I was working on
Enterprise software -- they didn’t want to locked in. So standards-
base was really important to them, so that if they want to change
their vendor and take their data with them, they could. I see a lot of
industry trying to rebel against this, specifically the media industry.
They’re really trying to rebel against that idea of the users data is
the users, but I think that’s going to be where open source really
starts to gain traction in offering this idea of -- by making sure the
data formats aren’t proprietary and by making sure that the
platform isn’t proprietary and that somebody can move from vendor
to vendor is going to become more and more of a market
requirement. And so that’s where you are going to see, from an
industry side, a lot more investment in open source, because you
buy interoperability through open source. Not necessarily easy
interoperability, don’t get me wrong there because I as a
proprietary vendor could open source my data format and then do
say, okay anybody else can deal with that and I am not going to
make it easy for them to. But at least that would be there, so you
can start that interoperability.

 And then from there I kind of see open source -- I think Dave is
right, I think you are going to see a lot more open source in public
policy, and in non-software aspects. You can see a lot more sort of
people being able to file bugs on products, like Tim Horton’s coffee
or their BlackBerry, simply because I think more and more industry
will realize that their most passionate resource are the people who
like their products, and want to make their products better. And it
would be foolish for them not to listen to those voices, because
those are the people who are going to then buy those better
products, and its like a sort of a guaranteed feedback loop. And I
don’t know how many eons we need of business moguls rewriting
the same maxim, listen to your customers and give them what they
want, but it seems like every business book is basically focused
around that principle. And then they talk about different ways of
listening and different ways of giving, and I think open source is
just a very powerful way of listening to your customers, and a very
powerful way of helping to give them what they want. How’s that
for prophecy?

 OR: Great, thanks very much, Mike.

 MB: You are quite welcome.

