
Goodger: I work at Google contributing to the Mozilla project, primarily to Firefox and
I continue to do the sort of the work that I’ve done for the past few years which is to play
an active role in the development of new versions of Firefox from the early stages of each
release cycle where we figure out what we want out of the next release through the
planning, documentation and development, bug fixing and release, so a whole bunch of
different things.

OR: How did you come to work at Google for Mozilla?

Goodger: Towards the end of 2004, we were shipping Firefox 1.0 and it was around
that time that I had come in contact with several of the engineers here at Google and just
was generally impressed by the enthusiasm of the people here, even over things that I
thought superficially were boring tasks. They seem to make everything fun and it wasn’t
long before in the process of working with them on these things that they sort of became
fun for me, too, and I thought that was sort of infectious and I thought maybe after
working with— working closely with the same set of people for the previous number of
years which is about four years, maybe slightly more at the time, that if I were to come
and work at Google I could potentially still work with those people but then also be
exposed to a whole bunch of new people with different ideas and enthusiasm, so that was
one of the reasons why I chose to come here.

OR: So how does that work? They pay you to work on Mozilla products. How did that
come about?

Goodger: Towards the end of 2004 I sent a note to somebody I knew here and saying
that I was interested in anything that they might have and it turned out that Google was
interested in Firefox. They liked the product and they thought it would be good to
support its development, so eventually they hired myself and several other people from
the Mozilla community to continue development on it.

OR: When did you first start working with computers?

Goodger: Not until I was older than most people around here. I started— I think I got
my first computer when I was about 12 or 13 years old. It was an Apple 2. It was sort of
a hand-me-down from my relatives. I used that for a while until it broke and then I had
a— I think when I was about 14 I got a 486 and that basically didn’t do anything
interesting at all. It played a couple of games and ran Windows 3.1 and it was not
anything like stuff that we have these days or what even necessarily what my friends had.
So I just made the best of what I had with that and played around teaching myself to
program with Excel Scripts and stuff like which was all that was on the machine, so that
was about 13 to 14 was about the age that I got into this.

OR: What’s the first programming project you worked on?

Goodger: I got into programming from an interesting angle although one that’s
probably becoming more common these days in that I was interested in having my own—

I wanted to make my own website, so I began to write HTML because it seemed easy
enough to figure out and then just reading some computer magazines I found tips about
JavaScript which is more of a programming language than HTML. Began to make my
website more elaborate and interesting, whizzy effects and that sort of stuff. Then over
time that sort of grew and the website became bigger and bigger until I sort of switched
over to contributing to Mozilla.

OR: Which Mozilla projects have you worked on?

Goodger: I got involved with Mozilla because I was so curious as to what had
happened with Netscape. Netscape had announced that it had released its source code to
the public in 1998 and I’d sort of looked at it at the time, but didn’t think there was any
way I could contribute to it because it was too difficult to work on given my current set of
skills. So I came back to the project to see what was going on about year later in 1999
and saw that they had switched gears a little bit and were now working on the new
version of the application that was written in languages much more familiar to what
developers in sort of XML and JavaScript type things for their user interface so I began
contributing to that, trying to— because they basically rewrote the entire application
from the ground up and so most of the user interface was either buggy or sort of in poor
shape or not there and so I figured I could probably help with this given my experience
with web development. So I sort of got involved with that and figuring out what the—
helping to figure out what some of the syntactic elements of the XUL language were and
so on. And it was from that work that I got a job offer from Netscape and I went to work
for Netscape in the browser group and worked on a number of different application
features there for a long while, then a bunch of different internal projects after Mozilla
sort of began to lose favor within that company and then after that onto Firefox.

OR: So it sounds like you’ve sort of a had a variety of roles within different projects. Is
that right?

Goodger: It’s being mostly worked on the browser for the past six or so years but I
have worked on different things within the browser, different browser functionality
pieces and on ultimately different browsers. Back in 1999 through 2002 or so, I was
working what’s now called Sea Monkey or what shipped as Netscape 6 and 7 before
eventually switching gears to work on Firefox and then various other things along the
way.

OR: Do you generally work alone or within small groups or within larger groups?

Goodger: It depends. If I’m working on a sort of a fairly self-contained feature, then I
can probably do it myself, although there is a testing community that as you make
changes or report bugs back, all that sort of stuff, but for more ambitious features, it’s
usually a small group of people, maybe three or five at most for certain things. Right
now, I’m working on features with about I guess four or five other people since it’s
significant enough in complexity.

TS: Are those people usually located locally or remotely?

Goodger: It depends. The one feature I mentioned where I’m working with a large
number of people, those people are all here and people paid by Google to work on
Firefox and so that’s one thing. But for some of the other features it’s a matter of, for
instance, if I’m working on a feature that’s part of the user interface but the user interface
requires some feature from some other part of the code, then I will go and find that
person and try and figure out a way to get that thing done. And that person who
maintains that other section of the code may work— may be a student in some other
country or something like that, so it’s a matter of using the project’s communication
infrastructure to locate the right person.

OR: Who’s usually in charge when there’s so many different people working on one
thing?

Goodger: With respect to Firefox and the Firefox sort of release process, there are a set
of people that sort of work together to try and make decisions and organize things. Like
at the start of each release we sort of sit down and figure out what we want out of it and
then people sign up for tasks and take on the role of making sure that what they signed up
for gets done and if that means that they need to work with three different people to get
that done, then they need to drive that. Aside from that, just sort the practice, the
operational side, Mozilla works on sort of what they call a benevolent dictator model in
open source which means that each little subsection of code is called a module and has an
owner and peers and basically the owner and peers are the set of people that do—
coordinate the work and get it done with the owner basically making decisions where
consensus cannot be reached and all that sort of stuff. So within the context of the Firefox
browser and user interface, I am the module owner.

OR: How do you generally communicate with people you work with?

Goodger: Right now it depends on the project. Like, for instance, if someone is far
away, it would be through IRC or e-mail. People are nearby, it’ll just be a hallway chat,
but what I’ve been trying to do lately and my most recent communications have sort of
been of this sort is to try and get more discussion into the news groups and mailing lists
so that we have sort of an archival record of all of the decisions that have been made
because it can be difficult if a year from now we’re trying to figure out why you did
something and we might forget the discussion that we had, so that’s sort of where I’d
like to see things head. We’ve actually been poking things along in the past month or so.

OR: Is it generally working, you think? Or do you think it will?

Goodger: I think it’ll take some time because one of the things about open source
projects, especially when you have an open source project that’s started by a company
like Netscape, there’re different worlds and when you are a commercial entity, you get a
bunch of people who’re used to working in a closed environment on a particular campus
in the same building and on the same floor. The convenience of being able to walk over

and talk to somebody about something is very— It should not be understated how
powerful that is and, so, as a result, from the very start of the project when Netscape was
significantly involved, it was difficult to get people to sort of more fully engage with the
community. In fact, that culture has sort of followed the project and I know that myself
there’re been times when I have done that sort of thing and it just makes it very difficult
later on to figure out what’s going on.

OR: Where do the code contributors work on the code?

Goodger: How do you mean where do they—

OR: Where— I don’t know...

TS: Well, I think what we’re getting at is sort of what you were saying about sort of
maybe expand a little bit upon the ownership and how it’s determined who’s going to be
on which teams, on which modules. Is it strictly voluntary? How is it decided who’s
going to be the owner of the module? How is it decided who’s going to be up here and
what is the working relationship like?

Goodger: I think people— as far as people joining projects, people join projects that
they’re interested in and they’ll help out where they think they have skill or have
something to contribute. Sometimes if people work for a company and that company’s
interested in contributing to Mozilla, that company may have interest in a particular
product or a feature and thus will pay its employees to work on that particular task.
Someone may pay someone to work on Thunderbird but not Firefox, for instance, but as
far as the actual sort of the leadership, what generally happens is when there is a case
where there are sections of code that are not clearly owned or not being well owned, the
sort of organizational structure that sits above all of the Mozilla projects, like Firefox,
Thunderbird, etc., the Mozilla Organization/Foundation I guess at this point, will take
nominations for who the new owner is to be and there’s sometimes discussion and people
will agree or disagree, etc. But usually it’s the case that there was a section of code and
it’s been unowned for some time or somebody else— It’s been unowned and somebody
else has stepped up and began acting like the owner and basically been reviewing patches
and producing new code and keeping that code alive and so someone will say, well, why
don’t we just make this person the owner and usually the case is, well, yeah, looks like
that the person’s the owner anyway, so we’ll just make it so and so that usually happens.

TS: Maybe you can think of a specific example of a module where that’s kind of played
out?

Goodger: Well, most recently I think an example has been the Java to XPCOM Bridge
which is a thing that allows code written in Java to talk through XPCOM to other Mozilla
components and services. And there was some old code in the Mozilla source trade
called Blackwood which I don’t believe was being— or at least wasn’t as up to date as it
could be and I think somebody from IBM, Javier Pedemonte, had written a new one and
he was actively developing that and so people thought that he should be owner of this

thing and so there was a brief discussion and it was made so. They have a tool for
tracking who— what all of the modules are, what code those modules contain and who
the owner appears and members are and that system is called DeskBot, so somebody and
went and made that change in that system and now he’s the owner.

TS: Who manages the DeskBot System?

Goodger: I’m not sure. I think a couple of people at Mozilla. Brendan, Mike Shaver,
those are people that know how to add and edit people on that system. I mean, individual
owners can— If you’re the owner of a module, you can manage your own module. You
can add peers, people from the community who’ve been volunteering a lot and making
significant contributions. You can make them peers and stuff like, but as far as sort of
the meta, these are people at Mozilla.

OR: How important are the comments that are within the code? Do you use those as a
way of communicating instead of, I don’t know, any other means or—

Goodger: For a long time— One just sort of personal editorial, I don’t think Mozilla
code is commented enough and I’ve sort of contributed to that as well over the years in
trying to improve it, just from having to go back in later years and re— figure out what’s
going on, but it was never a tool for documentation on the website that was easy enough
to use that developers would use it as they wrote code. So typically the code is sort of,
you know, where there are comments, those comments are documentation for the code.
If someone went the extra mile and wrote actually web page documentation for how
things worked, that’s sort of a— within Mozilla at this stage, at least, that’s sort of an
unusual thing. So a lot of the comments are to either themselves, people to themselves,
or to other contributors as to how this stuff works.

OR: Do people ever go back and make comments later?

Goodger: Yeah, I mean, sometimes you’ll find people who— you’ll look through a file
and you’ll see some code that’s very old that might date from when the project, when this
version of the application was still getting started back in ’99 for instance and very very
old code that’s maybe a little messy or not well documented and there’ll be a comment
later on from somebody saying what does this do or what’s this stuff, maybe in the hopes
someone will come along – someone else who knows – might come along and either
document it better or improve it. So, yeah, sometimes there’re notes like that. Or just
sort of often editorial comments like this is a really bad way of doing this, this sucks or
something like that, as a mental note to the person that maintains that file that next time
they come through they should consider optimizing or something like that.

OR: Can you think of a time where that ever led to a significant change if a comment
like that—

Goodger: I’m not sure. I mean, usually they’re over relatively small things because a
lot of the major changes or re-architectures and that sort of stuff, they’re being tracked

outside of the code. But back in— after Netscape 6, Netscape 6 shipped and was very
slow and buggy and there was a significant effort after that within Netscape developer
team to improve the performance, for instance. So a lot of those optimization things or at
least the really massive ones with huge impact were identified and filed through the bug
system and then tackled that way.

TS: Are comments ever misused in any way, however you want to define misuse?

Goodger: People will sometimes write bad comments. Say you have some code that I
+ 1. There might be a comment that says increment I which is not really that helpful
because the code clearly says that and generally saying it’s— not all comments say what
the code is supposed to do. Sometimes they say what it does do, which is in that
particular example, that’s what it does do. It doesn’t really sort of give you an overview
of what the intent is and the intent is usually what’s more important when you’re trying to
find bugs because you’re trying to figure out what it should be doing and comparing that
with the actual code and sometimes you get so deep into the set of code that it’s difficult
to figure out what the intent was. The idea is to some extent that code be self-
documenting and that people choose good names for variables and functions so that you
can read through the code and assuming you have a basic knowledge of the vocabulary of
the system, that you could figure it out but that’s not always the case and there isn’t
always sort of that overview documentation that establishes that vocabulary.

OR: Just generally, how would you describe your programming style?

Goodger: What do you mean by style?

OR: I guess— I don’t know. However you think you would—

TS: Maybe a better way to put it is have you ever clashed with other programmers over
a way of working or not so much a particular aspect of the code, but a kind of work flow
or a work style?

Goodger: Over a period of time, certainly there’ve been incidences. People have—
everybody has different expectations and different ways of working and sometimes it’s
easy, especially when a lot of communication is done electronically, for subtlety or
humor or anything like that, senses of humor to be lost in transmission. So if you say
something in a way that’s incompatible with the way something else works or with the
way that they themselves (inaudible), they might take offense or there’s that and there’s
just legitimate things where either I’ve been wrong or I’ve learned something from an
experience or the other person’s been wrong and is learning something from the
experience, so there’re probably countless examples over the years. This is pretty much
the only project I’ve worked on while being a software engineer.

TS: How are conflicts between different people, how are they resolved? Between peers,
let’s say.

Goodger: Typically, people try to— There can be argument, but ultimately at the end
of the day, it either sort of fizzles and/or people need to— people sometimes step back
and take a look at it from another angle or somebody else who— If people are arguing
on a public list or an IRC channel with other people, someone else might come along and
offer a different perspective which either causes them to join the argument or for the
other two people to sort of stop and think about it for a moment and either continue
arguing or stop. And then people either form a difference of opinion or they resolve or
come to a conclusion, so that’s— I think those are some of the things that I’ve noticed.

OR: Do you generally work on assembly language portions of the code or in JavaScript
and XML?

Goodger: Mostly JavaScript and XML although some level of C++ because there’s a
very small amount of code implemented in assembly language which just handles
connecting functions in JavaScript to C++, but most of the back end rendering and all
that sort of stuff is done in C++. Most user interface is in JavaScript, so sometimes
working on a user interface feature I might need a feature in the back end, so I may have
done it myself or somebody else may do it, but since most of my work is in user
interface, it’s mostly JavaScript XML

TS: Are those boundaries between sort of the back end and the front end, the C++ and
the JavaScript XML, are those hard and fast? You mentioned that you kind of cross into
the C++ things if you need to do something. Are there sort of boundary conflicts,
territorial—

Goodger: I don’t think so much territorial. I think there are people— This is what I’ve
learned over the years through at times being very isolationist or working on specific
features and then needing something and going and producing a patch. I don’t think
people are territorial. I think people like to know— People who work in other parts of
the code. Actually, this is true for everybody. People like to know when you would like
to make a change to their code even before you start writing it, so that they can think
about it and then, well, (1) is this a good idea or not, (2) what might some good ways of
doing this be, so that they can help you come up with the best idea, the best way of
pursuing it, proceeding and so that they’re ready for review. When your patch comes
along, they can review it and sort of having the sense of knowledge of how this works
rather than being surprised by (1) a completely new feature that they’ve never considered
before with an unknown design that they then have to not only figure out just from your
set of changes, but also give technical commentary on. So people like to be told first.
Otherwise, people can be sort of irritated and I appreciate that because people have
produced stuff like that and thrown it over the wall to me to review so I’ve been sort of
irritated, so I think that’s sort of the level of conflict you get across different module
boundaries.

TS: And do you see that there’s any kind of cultural differences between people who
work on the rendering engine and people who work on the user interface? Is there a

differenced in the kinds of people who get involved in one or the other or in other aspects
of the project?

Goodger: I think that there are definitely cultural difference and variances across
Mozilla contributors. I don’t know if it necessarily maps to front or back end. Certainly
with respect to a number of developers on Firefox over the years, the sort of ideology of
those folks including myself, has been very practical results oriented in terms of getting
things done really quickly and whereas other folks may take a more relaxed, laid back
attitude to it. Like I’m working on the exchanges and I’m going to get them done on
whatever time— however long it takes and if they don’t make this next release then that
doesn’t really bother me, so I’ll just wait for the next one. Whereas the case for Firefox,
it’s always been— we’ve been trying to figure out exactly how much we can cram into
each release.

That sort of stuff may also break down based on how much time we spend on a project.
If you’re just volunteering a little of your spare time, then you’re not going to necessarily
be able to get something into a certain release so you may sort of accept that up front and
not stress out too much about it. Whereas if you’re working full time on something you
may be more inclined to do so. That’s one thing and just to add more detail to that, I
think some people are more product, or—that’s one word—or another word is result-
oriented than other folk who are just doing what they do and what they get out of it is sort
of the intellectual challenge and stimulation from actually writing code or figuring out the
answer to an interesting problem. And other people are trying to say how does this affect
the bottom line, to use a corporate term, but how does improve usability or how does this
make— how does this improve our standards compliance or any number of different
things.

TS: Which camp would you put yourself into?

Goodger: I tend to just by necessity have to be more focused on things I can try and get
done right now versus what things I would like to do. And sometimes I feel a little sad
about that because a number of years ago when I was more of a free agent before I started
working for Netscape I could go and pick any project that I wanted to do even if it wasn’t
necessarily that important and I could pay some attention to that and explore or research.
And sort of the trade-off when you have people who are all focused on what’s going
happen next and what the highest priority thing is, is that some of the small details are
lost or the interesting projects, little side things that don’t seem important, but maybe they
might seem important later on. You know, so those things are lost. So I think it’s good
that there is this variance because there’re people looking at all angles.

TS: Just to sort of finish up on this line, what kind of most interests you about your user
interface work? Why that? Why not something else?

Goodger: Well, I mean I certainly enjoy working in other parts of the code because a
lot of sections of code are easier to test than user interface. If you’re working on
something that just takes a set of data and produces another set of data, you can write unit

tests for it and be very confident that it works well. User interface is harder in that
respect, but also I tend to be very— I like building things that I can see and making
things that look nice. And by nice— I think I’m very fussy over little details, even down
to like a pixel on the screen where a line is— if it’s slightly to the left or slightly to the
right, where does it look right and creating balance and that sort of stuff. So I like to be
able to— getting sort of the instant gratification, too, that we get when you put
something together that you can see is what I think interests me about doing user
interface. And then on top of that, it’s like I said, the fussiness and attention to detail in
making it work better and more reliably and seem more complete or high quality than
previous versions or other products.

TS: So to sort of change gears a little bit, to what extent do you think Mozilla and
Firefox, in particular maybe, really relies on the work of volunteers?

Goodger: I think ultimately completely because, I mean, certainly companies supply
developers. There’re several people here that work on Firefox and the Mozilla
Corporation itself as a corporation that pays a bunch of people to contribute to a bunch of
different Mozilla projects but I think a lot of the spirit or— I guess that’s a good word for
it—comes from the fact that Mozilla projects are community developed and I think that
that will be— As soon as Mozilla software just becomes another corporate thing, I think
some of the advantage that some people perceive from it might be lost. I think people see
Mozilla as sort of an independent organization without as many of its— without sinister
motivations or anything like that, someone who’s sort of looking out for you with nothing
to really gain from it but your trust, so I think the fact— the community development
plays into that.

Also the community— A lot of developers from different parts of the world contribute. I
started as a volunteer. A lot of people who work on Mozilla— who are paid to work on
Mozilla started as volunteers. You talked to Brian. He started as a volunteer
implementing Mouse Wheel support for the browser. So engineering contributions and
then there are hundreds and thousands of people who download every really crazy buggy
nightly build in between releases and tests and subject their bookmarks to the abuse that
we’re putting them through right now and all that sort of stuff and report bugs. And
when bugs are filed, there’re people that have the entire bug system it seems, all 300,000
bugs in their heads. Someone files a bug, they can say, oh, that’s a duplicate of that one
and just close it out and keep the system in check so that developers can get work done in
terms of— and be able to work effectively and managers can see useful bug lists and not
ones that are thousands long so that QA effort is mostly community. As is localization.
Firefox has many localizations and those are— The only one that’s sort of developed by
the developers who work at various companies is the English one and then all of the other
languages are (inaudible) by independent volunteer teams that at a certain point in the
release cycle give them the go-ahead to start translating all of the strings and then they
produce the localization and that becomes the official one for the language.

So, there’s lots of different places and I think without a lot of those different things, I
don’t think Firefox would necessarily have the reach or quality or any of that sort of stuff.

I think we’d probably— Without the people who help in testing bug management side,
the engineers would probably have all pulled their hair out and gone on to something
simpler, so—

OR: Why do you think people volunteer?

Goodger: Well, it’s just interesting. The reach is such that it’s an interesting project to
work on because you have the ability to help shape the future of a product that lots of
people use. And Mozilla software has lots of users, it’s not just Firefox. Thunderbird is
probably a couple of million users and the same with Camino on Mac and these products
are well received and reviewed in the press and that sort of stuff, so it’s fun and cool to
work on that sort of thing. It’s also software that we all use every day so sometimes I
thought, you know, maybe it would be more interesting to work on something else. I
mean, certainly Google has lots of interesting projects. Google has products that are
fascinating like maps and stuff like that but I think about it and I think this is software
that we all use every day. It doesn’t really— It feels like one of the most important
things that you could contribute to.

The other thing is I think it’s just web browsers are really complex problems and some
people like to work on really complex problems and there’re so many different aspects to
them, not just the user interface, I mean, all of the rendering. Making sure that you are
both standards compliant and acceptably fast. There’s lots of tough problems there and
interesting research angles and lots of stuff. So I think people contribute for different
reasons, but those are some of them I can think of.

OR: Do you ever find that people who contribute have different reasons for
contributing, for volunteering— kind of have different goals and perhaps clash over the
reasons why— If the have a different vision because of why they’re doing it.

Goodger: Certainly. I mean, if someone is— If someone’s goal is to create the most
standards compliant system, then implementing something that is not a standard might
seem to be outside their goals or might even seem bad to them. One example to look at
for this sort of thing is XForms. XForms is a specification that defines how web forms
should work in sort of an XML like way rather than as they exist in HTML right now.
And it’s supposedly a— it’s supposed to be a companion specification to XHTML which
is an XML version of HTML but XHMTL has no built-in forms—I don’t think—it was
designed to rely on XForms. And so there’re people who think that that should be
implemented and that should be the way to go and then there’re other people who say,
well, standards compliance is important but we may not necessarily need to implement
every standard or we may choose to do something that’s more practical so that existing
web page developers don’t need to rewrite their entire site using this new technology, but
can make a few small changes to get the same effect. And you know there can be heated
discussions between the two people, the standards, the XForm side might say, well, by
doing this, you’re effectively undermining our technology and people say, well, no one’s
going to adopt your technology and these arguments form and eventually someone—
Either they’ll work it out themselves or if it’s too polarized, there’re people— like I said,

the decision-making structure within Mozilla will come out and say, okay, well,
considering all of this, we say this one.

OR: So I understand that during the early development of Firefox, CVS access was
limited to a small team of workers. Why was the access restricted in that way?

Goodger: I think that the reason for that was that— And I think just, my personal
feeling is that probably wasn’t the best thing to do in retrospect, but it was sort of a
response to the way the SeaMonkey product had developed over time and that was that
SeaMonkey itself is a collection of different pieces. There’s the browser and mail, etc.,
but also within the single piece the browser, there were different parts like sidebar and
bookmarks and all that sort of stuff. And I think each of these things were separate
modules and after Netscape sort of disengaged from the development process, it was
never clear who managed any of that and how it would be managed. And as a result, it
just became subject to sort of incremental change but without really any combined
direction and so lots of small changes went in and the browser bloated a little over time
and it wasn’t particularly good with Netscape because my personal opinion is that the
Netscape UI was pretty bad for 6 and 7. It was based very much on Netscape 4 which
was already kind of bloated.

It had a bunch more stuff thrown in to appease the requirements of Netscape.com and the
rest of it was kind of overwrought because within Netscape, with a hundred or so
engineers, an engineer might be assigned to work on a small part of the world and that
would be the only thing that they would do and so they would over-engineer some— All
these things sort of grew as massively over-engineered pieces. And so then that was sort
of left and rather than considering this sort of mass of not very efficient user interface,
people have sort of set about continuing to work on it and add to it and all that sort of
stuff, and it was very chaotic because the only— because there was no clear either sort of
product requirements or product plan or any sort of vision for what that should look like.

The standard rules for checking in code applied which mean that anyone who had review
and a second review could check in, so things were happening all over the place and it
was growing and it was crazy. And so the idea was to create a new place in this CVS
repository that prevented this from happening by restricting the check-in lists, although in
retrospect, the very active forking as it was, the user interface, was probably enough to
prevent people from checking in and establishing rules for who should review code and
all that sort of stuff, so I think what the— putting that restriction on there probably did—
was go a little bit too far and effectively say we don’t want you which is not really the
case, but—

OR: So how was it decided early on who would participate?

Goodger: Basically, it was just a bunch of people on IRC got together and were talking
about it. I know that a number of us had expressed dissatisfaction with the Mozilla
product and Netscape products and were thinking about what could be done better and
Dave Hyatt had started what is now called Camino which was a separate browser and

designed this to be a nice, streamlined user interface. And so he thought it would be a
good idea to do the same thing in XUL which is the XML language—for Windows and
Linux, later it turned out it would work on Mac too but— so there was a sort of a
discussion and just the set of people that that participated in that discussion joined the
initial project and I think Brendan was in that IRC channel and so he just went about
setting up a module and DeskBot and all that sort of stuff and then we were able to check
in code.

OR: So how did access restrictions change over time to become more open?

Goodger: Later on, I guess around— Maybe it was late 2003 or early 2004, it was clear
that the system— Well, one, it was causing to people to be sort of— It caused— The
very fact there was this access restriction was causing there to be division within the
community. It was like, what makes these people think that they’re better than anybody
else? And then also the fact that changes would happen in the back end that would lead
to changes being required by the front end, like an API would change for a user interface
or something like that and so the people that made the change in the back end were very
diligent about making sure the SeaMonkey front end was updated because they could,
because they could have access to the code, whereas with Firefox they couldn’t, so
changes would get made and Firefox would break, so it just wasn’t an efficient way of
working. When people make API changes, people need to be able to patch across the
entire code base and so with these things in mind, the restrictions were lifted and just
some—

What should’ve been done in the first place which is basic review rules were put into
effect which basically stated if you want to change this code, you need to get review from
either a module owner up here and if you’re just making small changes like if you’re
fixing a spelling mistake or if you’re changing an API or something like that in hundred
places across the entire source string, just to review for the entire change we don’t need
to necessarily look at it then because you’re not doing anything that specific to Firefox,
you’re just renaming a function foo, a function bar, so as long as someone reviews the
change, it doesn’t matter. So that sort of covered all of the bases really and made it seem
less exclusive, exclusionary, but I think still to an extent some of that followed the project
until today.

OR: Oh, really. In what ways?

Goodger: I just think people have a negative opinion of the way Firefox has developed
and people who work on SeaMonkey, for instance— SeaMonkey’s a very inclusive
process in terms of allowing people to contribute changes and that sort of stuff and you
can read some of their documentation. They had a Reasons page that talks about some of
the problems that they see with Firefox development and I think that some of the things
that they said are correct and I think we should all try and fix them and some of the other
ones we disagree, so there you go.

TS: How about other Mozilla projects? What’s your impression of those in those same
terms? Where in the spectrum do those lie in between the sort of SeaMonkey and Firefox
models?

Goodger: I think, for instance, Camino is a very collaborative community process for
that one, but there is I think enough intelligent and opinionated people at the core of that
project that it doesn’t go off the rails. I think they have a mailing list and there’s lots of
discussion on that and people talk about what they’d like to see and that sort of stuff.
Then there are community leaders like Mike Pinkerton who actually works here at
Google and is here this week and other people within that community that are sort of
leaders that steer the discussion and make sure that bad things aren’t accepted, so I think
that that works quite well for them. It’s like— I think that’s sort of the right mix of
having an inclusive process but also being careful not to let things become unstuck.

Then there’re other projects— I mean, Thunderbird, I’m not sure what the developer— I
think Scott Macgregor uses— I’m not sure what communications infrastructure he uses
for that, but I know he works full time on it as does David Bienvenu, both who work for
the Mozilla Corporation and then there are volunteers and I’m not sure what the primary
communication model for them is, if it’s a mailing list or if it’s a forum on a website or
something like that, so I don’t know if you’re speaking to him, but he would know more.

TS: This is not on our list, but it falls from some way you said it and I was interested.
How does a project like Firefox deal with a situation if a leader drops out, if someone, or
a Camino or something else, like it’s someone who does provide that sort of central
vision and that kind of direction, that strong leadership. How is that kind of— How is
that person replaced? What is the fallout or have you had that experience?

Goodger: I think it’s interesting because I’ve been reading a book lately which I think
is— which I’ve been enjoying which is called Producing Open Source Software by Karl
Fogel and it talks about these two models. At least it talks about the benevolent dictator
model and it talks about another model that’s used elsewhere by other projects and it says
that over time projects transition from benevolent dictator into this more democratic
system and I think Firefox may have actually been the reverse of that. If you look at
SeaMonkey and the way SeaMonkey was developed back in ’02 or so, that was sort of a
very— If you wanted to change something, if you got the required approvals, you could
and sort of transition to the system of being more sort of benevolent dictator style, but I
think that if a leader— if a single leader leaves, I think the other people in the peers
group will probably take over those responsibilities, either one person will step up or as a
group, that they will handle it. Those are the two options I guess. I don’t think anyone,
completely aside from or has never been involved would step in, or someone who’s not
known to the peers group would step in and I think that the leadership has to come from
within that.

TS: And do people drop out? I mean, do people disappear?

Goodger: Sometimes. Not typically for any of the application front ends, the products
themselves, but sometimes for individual— some modules, people either due to time
commitment or something else, they will go away sometimes, they’ll come back six
months later or something like that. Sometimes they’ll disappear for good. In that case,
whatever code they work on is either taken over by somebody else. There may have been
several people working on it, or the code will begin to sort of stagnate a little bit until
somebody else comes along that can work on it.

OR: So kind of switching gears here, why do you think Mozilla in particular, Mozilla
Firefox has been able to attract such a large number of users?

Goodger: I don’t know the exact answer. I think it’s probably a combination of
different things. I mean, from an engineering point of view I’d like to say that it’s
because it offers better features or is in some way more compelling as a product and I
think there’s an amount of that. I think it filled a need from the market at a certain time.
People became dissatisfied by Internet Explorer and its security issues and pop-ads and
all that sort of stuff. Also I can’t help but think that the community marketing— I think
that that’s had a positive effect and all of the buzz that it’s had in the press as a result of
that and a few other initiatives like the New York Times ads and all that sort of stuff. And
then also there’s this sort of— Well, I mentioned before about Mozilla and it sort of
seeming like an independent entity. There’s that I think which might help. It seems like
it’s not produced by a company that wants to find— this is really part of some secret
agenda to figure out some way to sell you something. And then also there’s sort of this
aura around Firefox. I think it is a really well-crafted combination of name and I think
the Firefox name is probably the— one of the best names I’ve heard for any of the
Mozilla software and the sort of imagery icon, the logo, and I think those things work
well together and people sort of anthropomorphize sometimes and talk about Firefox as a
person or something that they relate to.I was talking to Bret Wilson who I work with and
he said that his girlfriend talked about Firefox versus Internet Explorer and she said
Firefox crashed too much but she said that— The way she characterized it was that
Firefox was very moody and Internet Explorer was a robot and I think some people—
The sort of draw for some people was that, that it seems more— I don’t know, more
something that they can relate to. I don’t know how or why.

It’s maybe something intangible, but the name itself is interesting, the story behind that.
We changed— The name was originally Phoenix to signify sort of rising from the ashes
of Netscape and all that sort of stuff and it turned out that Phoenix Technologies, a
company that makes BIOS and stuff like that was actually— didn’t want us to use that
name so it had to change and so we choose something similar sounding which Firebird
which is similar to Phoenix and that was also used by another open source project so we
had to change it again. These are unfortunate problems you have to solve, especially
when you’re picking out users, so we had to figure out a new name and we spent about
two weeks and these two weeks were— There wasn’t a lot of engineering done in that
time. It was sort of beating heads against walls and I read the dictionary trying to find
words and we came with about three of them and they all were terrible and so Jason
Kersey who’s the maintainer the Mozillazine, the community news website, was just

running through a bunch of words that started with fire. He was going firecat, firefox and
then I said firefox and then I went and looked it up in the U.S. Patent Trademark Office
website to see if anyone had trademarks on in software and I don’t think there were any
and I said that sounds really good and he wasn’t even serious. Like he said I wasn’t
serious. That’s a dumb name and I said, no, I think it’s great and so we told it to the
people, Mitchell and so on and she went and did a formal investigation.

As a group we sort of sat down and looked at a bunch of different— We looked at about
a three different names. I can’t remember what they all were, but I think firecat was one
of them, Firefox, firecat, firefly and tried to pick the best one and we as a group decided
Firefox was the best one and so she went and did lots more investigation and found out
where there were potential issues and solved them all and then I think the Foundation
applied for the trademark so that we’d never have this problem again, so that’s sort of
the— That’s how that name came about.

OR: What do you think sets Firefox apart from other Mozilla projects? Maybe in terms
of being able to attract large numbers of users. I know there’re other projects that have
attracted a large number but not quite in the same way that Firefox had been able to.

Goodger: I think Firefox solves a problem that a lot of people— solves sort of pain
points that a lot of people were experiencing, like some of the things I mentioned with
Internet Explorer, security and pop-up ads and all that sort of stuff and I think Firefox
provides a relatively convenient solution for those. One of the things at Firefox that I
tried to really stress was making the transition easy so we made sure that our import
wasn’t just whatever previous versions of Netscape had, importing IE favorites and all
that sort of stuff, but actually going and trying to understand what stumbling blocks
would be to people’s adoption, like if people had saved all their passwords and I use the
password manager. If they came over to Firefox and they tried to log into their sites we
wouldn’t remember it and if they’d forgotten their passwords, they’d have to go back to
IE to get into the site. So we figured out a way to import everyone’s passwords and all
that sort of stuff, to make sure that that transition was seamless so that since people
experience this pain, we can offer them a solution and say that the cost or difficulty for
you as you this change is so close to zero that it doesn’t really matter and so that’s sort of
been our focus.

In other places like Camino has more of trouble I guess attracting users than Firefox even
though I think Camino has a higher market share on Mac than Firefox has on Windows.
I’m not sure if that’s true, I can’t remember. Just because of the fact that the default
browser on MacIntosh isn’t— doesn’t subject users to as much pain. I mean, Safari is a
descent browser and people use Camino only if Safari doesn’t meet their needs and Safari
meets a lot more needs than IE does. The same problem that Thunderbird has is that a lot
of people use web mail these days or e-mail and it’s often mandated and rolled out by
your IS department and stuff like that. It’s not something that you can necessarily
configure easily because you need to know all of your settings and put them all in there,
that sort of stuff. So those are some reasons I think why they may not have attracted as
high user counts, but I think over time either those projects will come up with more

compelling features or migration will be easier or fundamental user behavioral patterns
will change or something.

TS: I just want to interrupt ourselves here for a minute. I don’t want to keep you here
too long. I want to keep an eye on the time.

Goodger: How long is your list of questions?

TS: We’ve got a bunch more but we can shorten things. We’ll be done by 11:00.

Goodger: Okay. That’s good. Then we can go and find I think Darin you’re talking to
next.

OR: How would you compare Mozilla’s vision in 1998 with the present reality?

Goodger: I’m not even sure what Mozilla’s vision— Let me think about what their
vision was then. I think when the source code was released at the very beginning, the
intent was to just provide source. And then a little bit later on, so what happened was
since they provided source code— I mentioned Jason Kersey before. He actually started
the site before he became the owner of Mozillazine. He owned a site called MozBin and
their purpose was to take source code and compile it and actually give people something
they can use because most people don’t have the tools to do that work, at least on
Windows or the time because it takes about 45 minutes or so to compile and so he did
that work and posted builds. And so then eventually Mozilla sort of expanded its goals a
little bit to actually distribute software to people but just for testing and towards the end
of that, I guess around the start of ’99 or so, expanded to include that, so not just
developers but also for testers. And that turned out to be very successful because
community testers were interested in running the software, running bleeding edge people
love to find out what’s going on and be ahead of the game and all that sort of stuff and
that turned out to be very successful for reporting bugs. And then as Netscape began to
sort of exert more of a stranglehold than even the engineers at Netscape would’ve liked,
Mozilla began to take on the notion that it could perhaps be the organization that ships
the pure or more usable version of the software that Netscape was shipping and then, as
time went on, Firefox.

I think when the Mozilla Foundation was formed, the mission was to preserve choice and
innovation on the Internet and I think that that is a really good mission. That’s where
they are today. It’s a nice sort of— It’s fairly broad, but it accommodates all of the
individual projects that are occurring within the Mozilla project as a whole and Internet
encompassing not just web Firefox but also e-mail, chats, things like Chatzilla and things
stuff like that, just various other tools surrounding those projects. So I think that that’s—
that’s where the mission is today.

OR: The Spread Firefox website states that Spread Firefox was founded on the same
principles of community involvement that drive the development and testing of Firefox.

How do open source principles sort of influence those marketing techniques, do you
think?

Goodger: I think it’s just a matter of having a— The thing that makes open source
projects function healthily is good communication and having projects available that
people with spare time will want to contribute to. I think it’s difficult for engineering
projects to do that because people who are at the center of a project may not necessarily
know what other folk are interested in working on and communications can be difficult.
But with something like Spread Firefox, a lot of people have enough time to help with
some of the marketing projects that they do and a lot of them don’t require that much
commitment and all of them are very high payoff and are exciting. So people are
interested and not everyone has programming skill and it’s a way that they can help
contribute to supporting a project that they love in a way that suits them.

OR: So have you ever contributed to something on Spread Firefox or—

Goodger: I haven’t contributed to marketing for a while. I did a bunch of marketing
work before Spread Firefox was set up just in terms of making the product pages on
Mozilla.org, writing the copy for them and all that sort of stuff. But since then mostly
engineering and project management but not so much marketing, aside from sending in
my 50 bucks for the New York Times ad.

OR: Do you think that’s because there are marketers who are specifically now working
on Spread Firefox?

Goodger: I think it’s because that system seems to be functioning pretty well and I
myself, my time is always fully booked. Well, it’s probably booked in excess so I just
sort of find some sort of things to do and I try to look at the highest priority things and
marketing’s— I don’t mean to say marketing isn’t the highest priority, but marketing
seems like it’s being well handled. So it doesn’t need folks to jump in and I also think
that there are many more people that are interested in that than engineering, so—

TS: Could you just very sort of briefly describe sort of the kind of relationship between
people working kind of inside for the Mozilla Corporation and people who are working
almost entirely on Mozilla and Firefox projects at other companies like Google or Red
Hat or wherever? How is that managed and how does it work?

Goodger: This is just my personal opinion, but I don’t think it works as well as it could
and this is nothing new. This is nothing new to the Mozilla Corporation; this is
something that goes back years. When I worked at the Mozilla Foundation, people would
often say what are you doing, what’s going on, we don’t know, tell us. And oftentimes a
lot of these complaints would have a very sort of whiny tone to them and so people
would either not get back to folk or there was no sort of infrastructure set up for
communicating well in an open environment. And I think that that’s improving,
especially with the new mailing list and news groups that we have, but I think it’s—

As someone who’s worked both inside and outside, the realization I have now is that
there is a night and day different between being inside and being outside because inside
it’s an open source project. But in some ways it still functions like a company in that if
there’s somebody sitting over there you might choose to just talk to that person and reach
a design decision rather than going through a public mailing list and that means that when
you do that, everybody else on the outside has no idea what’s happened and then it seems
a surprise or there’s a shock or why was this change made this way and all that sort of
stuff. So that’s sort of a source of difficulty and has been. So basically we’re trying to
encourage people to seek to use the open communication systems first now versus
whatever other means, so there’s that.

TS: How about any tensions between you now working on— still working on Mozilla
projects but at Google with Google, with the Google side of it? Is there any kind of clash
of philosophies or competing motivations?

Goodger: Within Google, I don’t think so. I think Google is very— Google likes
Firefox and they’re very much— The attitude that I’ve seen at least has been very hands-
off, like this has been successful so far, why would we mess with it? So I don’t think
Google has any sort of interest in causing change. I don’t think it necessarily— I don’t
think it could. I mean, the way open source works. People would be upset if something
like that would happen and it’s not Google’s intent to be evil, so that’s my thought there.

OR: Just sort of generally, do you consider open source software projects as a public
service? Do you think of it as a public service work?

Goodger: I guess that’s— Yeah, I just haven’t ever used those words to describe it, but
I guess so. I mean, that’s what they are. Lots of people make software that’s free for
people to use. I mean, Microsoft made its beta of IE 7 available for download for free for
XP users and I’m sure that when they’re done with IE 7 they’ll make the final version
free as an update for their users. But more so— I don’t necessarily think that them doing
that is a public service because they have very clear goals in addition to it. Companies
might make statements that they want to do this or that, but if their motivation is
something else it’s not really a public service. The mission of Mozilla is to preserve
choice and innovation on the Internet, so with that as its primary goal—yes.

OR: What made you, or even did you choose public service over maybe a potentially
more lucrative job?

Goodger: I don’t think it was necessarily— I don’t think that’s the way that maybe
some people think about it. I didn’t think about it that way at first. I thought it was this
is something— My angle or reason for doing this was that this is something really useful
and interesting. So now after some years, there’s also the additional— I feel additional
responsibility in terms of making sure that this continues to work properly, but my initial
point of view was— I didn’t really understand open source or anything that well when I
started. It was just something that was accessible.

OR: So you mostly got into it for interest.

Goodger: Interest, yeah.

OR: What if anything do you think the popularity of Firefox will do for open source
movement as a whole?

Goodger: I think Firefox is one of those open source projects that sort of says that this
stuff is not just for geeks. This is for everybody and this is credible. This can be
deployed not just across your servers but to your users. You can roll Firefox out to your
entire accounting department and have them use it as their browser and not just have your
system administrators maintain your service on Linux. I hope to see more open source
projects that focus on things that people can use. Google has been very successful at
creating products that people like to use and Google’s source code for that isn’t open
source but clearly there is a demand for usable interesting software so I think open source
can benefit from providing that and not just sort of either sitting around and waiting for
Microsoft or Apple or whoever else to provide it.

It’s also sort of distributed. I mean, people are free— Much like the web, so this web 2.0
thing that’s going on at the moment, people sort of feel like they can very easily play a
part in shaping the future of how things go. Not every project succeeds. Some of them
don’t turn out to be that useful to a lot of people but the fact that it’s sort of liberating
people, the open source sort of liberates people to go and pursue their own destinies. I
think it’s positive.

TS: That’s just about all we’ve got. Just a kind of question for our sake. Outside of sort
of current employees and key developers and people’s names that we would probably
know, is there anything that you think we should— Anybody we should talk to who
maybe we don’t know about already, people who you think would be interesting to talk to
that kind of maybe haven’t been written up in an article or that’s been written
somewhere.

Goodger: There’re a lot of people at Mozilla this week in town so you’ll probably find
a number of people there that would be interesting to talk to and who contribute to
various parts of the code from the lowest level to the highest. One person who is— Just
from a different product to Firefox perspective, there is Mike Pinkerton who works on
Camino. He’s actually in town this week. Whereabouts is Fairfax with respect to D.C.?

TS: A suburb.

Goodger: He actually lives in Ashburn.

TS: It’s actually probably about half way between Ashburn and D.C.

Goodger: He lives there and actually works remotely for Google but he’s actually
presenting this week, so he’s another person. He’s the leader of the Camino project so

there’s another project and that one is running pretty well. He’d be a good person to talk
to, but certainly at Mozilla this week, there’re some people who contribute __________
some people. Scott Macgregor who works on Thunderbird and there’s all kinds of
different perspectives.

